IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i2p386-d129849.html
   My bibliography  Save this article

Formation Mechanism and Coping Strategy of Public Emergency for Urban Sustainability: A Perspective of Risk Propagation in the Sociotechnical System

Author

Listed:
  • Xiuquan Deng

    (School of Economics and Management, Beihang University, Beijing 100191, China)

  • Zhu Lu

    (School of Economics and Management, Beihang University, Beijing 100191, China)

  • Xinmiao Yang

    (School of Economics and Management, Beihang University, Beijing 100191, China)

  • Qiuhong Zhao

    (School of Economics and Management, Beihang University, Beijing 100191, China)

  • Dehua Gao

    (School of Economics and Management, Beihang University, Beijing 100191, China)

  • Bing Bai

    (Department of Finance Management, Jiangsu Normal University, Xuzhou 221116, China)

Abstract

Urban public emergencies now break out frequently, causing heavy losses and threatening urban sustainability at the same time. To help better curb public emergencies, minimize their damage to cities, and maintain the sustainable operation of the city, this paper takes the urban public emergency as the research object, discussing the formation mechanism of urban public emergencies and putting forward feasible countermeasures. First, we propose the concept of risk propagation chain and construct an urban socio-technical system risk propagation chain model by introducing the Tropos Goal-Risk framework. The risk propagation chain formation mechanism and the emergency formation mechanism are researched by using this model to analyze the specific conditions and paths of risk propagation. Then the targeted countermeasures are put forward to prevent and manage emergencies, advancing the goal of sustainable development. Finally, a case is used to verify the theory and model. This study not only provides a theoretical framework for the formation of urban public emergencies but also provides a practical method for modeling public emergencies and dealing with urban sustainability problems.

Suggested Citation

  • Xiuquan Deng & Zhu Lu & Xinmiao Yang & Qiuhong Zhao & Dehua Gao & Bing Bai, 2018. "Formation Mechanism and Coping Strategy of Public Emergency for Urban Sustainability: A Perspective of Risk Propagation in the Sociotechnical System," Sustainability, MDPI, vol. 10(2), pages 1-24, February.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:386-:d:129849
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/2/386/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/2/386/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Garvey, Myles D. & Carnovale, Steven & Yeniyurt, Sengun, 2015. "An analytical framework for supply network risk propagation: A Bayesian network approach," European Journal of Operational Research, Elsevier, vol. 243(2), pages 618-627.
    2. Pasman, H.J. & Knegtering, B. & Rogers, W.J., 2013. "A holistic approach to control process safety risks: Possible ways forward," Reliability Engineering and System Safety, Elsevier, vol. 117(C), pages 21-29.
    3. Heiko Apel & Annegret Thieken & Bruno Merz & Günter Blöschl, 2006. "A Probabilistic Modelling System for Assessing Flood Risks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 38(1), pages 79-100, May.
    4. Hayato Goto & Hideki Takayasu & Misako Takayasu, 2017. "Estimating risk propagation between interacting firms on inter-firm complex network," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-12, October.
    5. Inger Lise Johansen & Marvin Rausand, 2014. "Defining complexity for risk assessment of sociotechnical systems: A conceptual framework," Journal of Risk and Reliability, , vol. 228(3), pages 272-290, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tinggui Chen & Shiwen Wu & Jianjun Yang & Guodong Cong, 2019. "Risk Propagation Model and Its Simulation of Emergency Logistics Network Based on Material Reliability," IJERPH, MDPI, vol. 16(23), pages 1-18, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yuhong & Zobel, Christopher W., 2020. "Exploring supply chain network resilience in the presence of the ripple effect," International Journal of Production Economics, Elsevier, vol. 228(C).
    2. Hayato Goto & Eduardo Viegas & Hideki Takayasu & Misako Takayasu & Henrik Jeldtoft Jensen, 2019. "Dynamics of essential interaction between firms on financial reports," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-16, December.
    3. Qazi, Abroon & Dickson, Alex & Quigley, John & Gaudenzi, Barbara, 2018. "Supply chain risk network management: A Bayesian belief network and expected utility based approach for managing supply chain risks," International Journal of Production Economics, Elsevier, vol. 196(C), pages 24-42.
    4. Stephen Sullivan & Diana Garza, 2021. "Supply Chain Risks, Cybersecurity and C-TPAT, a Literature Review," RAIS Conference Proceedings 2021 0082, Research Association for Interdisciplinary Studies.
    5. Baruník, Jozef & Ellington, Michael, 2024. "Persistence in financial connectedness and systemic risk," European Journal of Operational Research, Elsevier, vol. 314(1), pages 393-407.
    6. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    7. Animesh Gain & Vahid Mojtahed & Claudio Biscaro & Stefano Balbi & Carlo Giupponi, 2015. "An integrated approach of flood risk assessment in the eastern part of Dhaka City," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1499-1530, December.
    8. Hou, Tianfeng & Nuyens, Dirk & Roels, Staf & Janssen, Hans, 2019. "Quasi-Monte Carlo based uncertainty analysis: Sampling efficiency and error estimation in engineering applications," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. Nishat Alam Choudhary & Shalabh Singh & Tobias Schoenherr & M. Ramkumar, 2023. "Risk assessment in supply chains: a state-of-the-art review of methodologies and their applications," Annals of Operations Research, Springer, vol. 322(2), pages 565-607, March.
    10. Scott DuHadway & Steven Carnovale & Benjamin Hazen, 2019. "Understanding risk management for intentional supply chain disruptions: risk detection, risk mitigation, and risk recovery," Annals of Operations Research, Springer, vol. 283(1), pages 179-198, December.
    11. Garvey, Myles D. & Carnovale, Steven, 2020. "The rippled newsvendor: A new inventory framework for modeling supply chain risk severity in the presence of risk propagation," International Journal of Production Economics, Elsevier, vol. 228(C).
    12. María Escribano-Navas & German Gemar, 2021. "Gender and Bankruptcy: A Hotel Survival Econometric Analysis," Sustainability, MDPI, vol. 13(12), pages 1-13, June.
    13. Yuhao Wang & Jiaxian Shen & Jinnan Pan & Tingqiang Chen, 2022. "A Credit Risk Contagion Intensity Model of Supply Chain Enterprises under Different Credit Modes," Sustainability, MDPI, vol. 14(20), pages 1-26, October.
    14. Esma Nur Cinicioglu & Gül Huyugüzel Kışla & A. Özlem Önder & Y. Gülnur Muradoğlu, 2024. "The Changing Behavior of the European Credit Default Swap Spreads During the Covid-19 Pandemic: A Bayesian Network Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 63(3), pages 1213-1254, March.
    15. Qazi, Abroon & Quigley, John & Dickson, Alex & Gaudenzi, Barbara & Önsel, Şule, 2015. "Selection of Optimal Redundancy Strategies for a Supply Network," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Blecker, Thorsten & Ringle, Christian M. (ed.), Innovations and Strategies for Logistics and Supply Chains: Technologies, Business Models and Risk Management. Proceedings of the Hamburg Internationa, volume 20, pages 419-450, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    16. H. Moel & J. Aerts, 2011. "Effect of uncertainty in land use, damage models and inundation depth on flood damage estimates," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 58(1), pages 407-425, July.
    17. Jon T Selvik & Eirik B Abrahamsen, 2017. "On the meaning of accuracy and precision in a risk analysis context," Journal of Risk and Reliability, , vol. 231(2), pages 91-100, April.
    18. Melanie Kunz & Adrienne Grêt-Regamey & Lorenz Hurni, 2011. "Visualization of uncertainty in natural hazards assessments using an interactive cartographic information system," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1735-1751, December.
    19. Lindsay Beevers & Lila Collet & Gordon Aitken & Claire Maravat & Annie Visser, 2020. "The influence of climate model uncertainty on fluvial flood hazard estimation," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 104(3), pages 2489-2510, December.
    20. Yilmazkuday, Hakan, 2022. "Coronavirus disease 2019 and the global economy," Transport Policy, Elsevier, vol. 120(C), pages 40-46.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:2:p:386-:d:129849. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.