IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v10y2018i10p3402-d171769.html
   My bibliography  Save this article

A Study of the Energy Efficiency Management in Green Standard for Energy and Environmental Design (G-SEED)-Certified Apartments in South Korea

Author

Listed:
  • Hyemi Kim

    (Department of Architectural Engineering, Kangwon National University, 346 Jungang-ro, Samcheok-si, Kangwon-do 25913, Korea)

  • Wonjun Park

    (Department of Architectural Engineering, Kangwon National University, 346 Jungang-ro, Samcheok-si, Kangwon-do 25913, Korea)

Abstract

With an increase in the number of Green Standard for Energy and Environmental Design (G-SEED)-certified apartments in South Korea, people are receiving incentives from the government to purchase them. Since 2013, many benefits for G-SEED-certified buildings have been offered, such as tax reductions and deregulation of building codes/guidelines. As beneficial incentives are granted to G-SEED-certified buildings, follow-up management of the buildings is also necessary. However, to date, there are no appropriate follow-up management systems or legal regulations for G-SEED-certified buildings. Buildings that are certified by G-SEED in Korean housing buildings account for 6.25% of Korea’s total area. In addition, G-SEED certification has been obtained for more than 20% of the total completed housing area (2014–2017). Therefore, the energy efficiency-management of G-SEED certified buildings is also very important economically for reducing greenhouse gas emissions. In this study, domestic and foreign energy efficiency follow-up management systems were analyzed, and the amount of energy that is used by apartment houses with incentives was investigated. We have identified problems with the G-SEED system by analyzing evaluation methods, evaluation items, and points of G-SEED certification in related research studies. We also compared the energy consumption of an apartment building with G-SEED certification with that of adjacent complexes, thereby applying original research methods. The results show that energy use in G-SEED-certified buildings was not efficient. Accordingly, the study confirms that continuous management after G-SEED certification by establishing a follow-up management system is needed. In this study, domestic and foreign follow-up management systems were compared, problems with the apartment housing information management system run by the government were examined, and improvement measures were suggested.

Suggested Citation

  • Hyemi Kim & Wonjun Park, 2018. "A Study of the Energy Efficiency Management in Green Standard for Energy and Environmental Design (G-SEED)-Certified Apartments in South Korea," Sustainability, MDPI, vol. 10(10), pages 1-20, September.
  • Handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3402-:d:171769
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/10/10/3402/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/10/10/3402/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Davide Astiaso Garcia & Fabrizio Cumo & Mariagrazia Tiberi & Valentina Sforzini & Giuseppe Piras, 2016. "Cost-Benefit Analysis for Energy Management in Public Buildings: Four Italian Case Studies," Energies, MDPI, vol. 9(7), pages 1-17, July.
    2. Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
    3. Lee, Nayoon & Tae, Sungho & Gong, Yuri & Roh, Seungjun, 2017. "Integrated building life-cycle assessment model to support South Korea's green building certification system (G-SEED)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 43-50.
    4. Tronchin, Lamberto & Manfren, Massimiliano & Nastasi, Benedetto, 2018. "Energy efficiency, demand side management and energy storage technologies – A critical analysis of possible paths of integration in the built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 95(C), pages 341-353.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rakhyun Kim & Myung-Kwan Lim & Seungjun Roh & Won-Jun Park, 2021. "Analysis of the Characteristics of Environmental Impacts According to the Cut-Off Criteria Applicable to the Streamlined Life Cycle Assessment (S-LCA) of Apartment Buildings in South Korea," Sustainability, MDPI, vol. 13(5), pages 1-19, March.
    2. Byungjun Yu & Saixing Zeng & Xiaohua Meng & Hanyang Ma & Daxin Sun, 2020. "Does natural environment prefer the right to the left? Governors' partisanship and corporate environmental performance," Corporate Social Responsibility and Environmental Management, John Wiley & Sons, vol. 27(4), pages 1605-1616, July.
    3. Sangtae No & Chungyeon Won, 2020. "Comparative Analysis of Energy Consumption between Green Building Certified and Non-Certified Buildings in Korea," Energies, MDPI, vol. 13(5), pages 1-16, February.
    4. Pamela Hermosilla & Claudio Quiroz & Francisco Cabrejos & Felipe Muñoz-La Rivera, 2021. "A Proposal for the Optimisation of Algorithms for the Calculation of the Energy Demands of Residential Housing," Mathematics, MDPI, vol. 9(16), pages 1-28, August.
    5. Acinia Nindartin & Hee-Woon Moon & Sang-Jun Park & Kyung-Tae Lee & Jin-Bin Im & Ju-Hyung Kim, 2022. "Influencing of the Building Energy Policies upon the Efficiency of Energy Consumption: The Case of Courthouse Buildings in South Korea," Energies, MDPI, vol. 15(18), pages 1-17, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Panagiotis Michailidis & Iakovos Michailidis & Dimitrios Vamvakas & Elias Kosmatopoulos, 2023. "Model-Free HVAC Control in Buildings: A Review," Energies, MDPI, vol. 16(20), pages 1-45, October.
    2. Juana Isabel Méndez & Adán Medina & Pedro Ponce & Therese Peffer & Alan Meier & Arturo Molina, 2022. "Evolving Gamified Smart Communities in Mexico to Save Energy in Communities through Intelligent Interfaces," Energies, MDPI, vol. 15(15), pages 1-29, July.
    3. Wadim Strielkowski & Anna Sherstobitova & Patrik Rovny & Tatiana Evteeva, 2021. "Increasing Energy Efficiency and Modernization of Energy Systems in Russia: A Review," Energies, MDPI, vol. 14(11), pages 1-19, May.
    4. Jakob Carlander & Bahram Moshfegh & Jan Akander & Fredrik Karlsson, 2020. "Effects on Energy Demand in an Office Building Considering Location, Orientation, Façade Design and Internal Heat Gains—A Parametric Study," Energies, MDPI, vol. 13(23), pages 1-22, November.
    5. Fabrizio M. Amoruso & Min-Hee Sonn & Soyeon Chu & Thorsten Schuetze, 2021. "Sustainable Building Legislation and Incentives in Korea: A Case-Study-Based Comparison of Building New and Renovation," Sustainability, MDPI, vol. 13(9), pages 1-41, April.
    6. Isabel Andrade & Johann Land & Patricio Gallardo & Susan Krumdieck, 2022. "Application of the InTIME Methodology for the Transition of Office Buildings to Low Carbon—A Case Study," Sustainability, MDPI, vol. 14(19), pages 1-17, September.
    7. Ray, Manojit & Chakraborty, Basab, 2019. "Impact of evolving technology on collaborative energy access scaling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 110(C), pages 13-27.
    8. Anh Tuan Phan & Thi Tuyet Hong Vu & Dinh Quang Nguyen & Eleonora Riva Sanseverino & Hang Thi-Thuy Le & Van Cong Bui, 2022. "Data Compensation with Gaussian Processes Regression: Application in Smart Building’s Sensor Network," Energies, MDPI, vol. 15(23), pages 1-16, December.
    9. Tengfei Ma & Junyong Wu & Liangliang Hao & Huaguang Yan & Dezhi Li, 2018. "A Real-Time Pricing Scheme for Energy Management in Integrated Energy Systems: A Stackelberg Game Approach," Energies, MDPI, vol. 11(10), pages 1-19, October.
    10. Ziqi Liu & Tingting Su & Zhiying Quan & Quanli Wu & Yu Wang, 2023. "Review on the Optimal Configuration of Distributed Energy Storage," Energies, MDPI, vol. 16(14), pages 1-17, July.
    11. Eunsung Oh, 2022. "Fair Virtual Energy Storage System Operation for Smart Energy Communities," Sustainability, MDPI, vol. 14(15), pages 1-16, August.
    12. Amasyali, Kadir & El-Gohary, Nora M., 2021. "Real data-driven occupant-behavior optimization for reduced energy consumption and improved comfort," Applied Energy, Elsevier, vol. 302(C).
    13. Filipe Soares & André Madureira & Andreu Pagès & António Barbosa & António Coelho & Fernando Cassola & Fernando Ribeiro & João Viana & José Andrade & Marina Dorokhova & Nélson Morais & Nicolas Wyrsch , 2021. "FEEdBACk: An ICT-Based Platform to Increase Energy Efficiency through Buildings’ Consumer Engagement," Energies, MDPI, vol. 14(6), pages 1-43, March.
    14. Martin, Nigel & Rice, John, 2021. "Power outages, climate events and renewable energy: Reviewing energy storage policy and regulatory options for Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    15. Flavio Rosa, 2020. "Building-Integrated Photovoltaics (BIPV) in Historical Buildings: Opportunities and Constraints," Energies, MDPI, vol. 13(14), pages 1-28, July.
    16. Simon Pezzutto & Silvia Croce & Stefano Zambotti & Lukas Kranzl & Antonio Novelli & Pietro Zambelli, 2019. "Assessment of the Space Heating and Domestic Hot Water Market in Europe—Open Data and Results," Energies, MDPI, vol. 12(9), pages 1-16, May.
    17. Chalal, M.L. & Medjdoub, B. & Bezai, N. & Bull, R. & Zune, M., 2022. "Visualisation in energy eco-feedback systems: A systematic review of good practice," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    18. Sriraj Gokarakonda & Christoph van Treeck & Rajan Rawal, 2022. "Investigating Optimum Cooling Set Point Temperature and Air Velocity for Thermal Comfort and Energy Conservation in Mixed-Mode Buildings in India," Energies, MDPI, vol. 15(6), pages 1-27, March.
    19. Dezhou Kong & Jianru Jing & Tingyue Gu & Xuanyue Wei & Xingning Sa & Yimin Yang & Zhiang Zhang, 2023. "Theoretical Analysis of Integrated Community Energy Systems (ICES) Considering Integrated Demand Response (IDR): A Review of the System Modelling and Optimization," Energies, MDPI, vol. 16(10), pages 1-22, May.
    20. Fernando Cassola & Leonel Morgado & António Coelho & Hugo Paredes & António Barbosa & Helga Tavares & Filipe Soares, 2022. "Using Virtual Choreographies to Identify Office Users’ Behaviors to Target Behavior Change Based on Their Potential to Impact Energy Consumption," Energies, MDPI, vol. 15(12), pages 1-21, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:10:y:2018:i:10:p:3402-:d:171769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.