IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v10y2022i2p39-d747578.html
   My bibliography  Save this article

A Novel Implementation of Siamese Type Neural Networks in Predicting Rare Fluctuations in Financial Time Series

Author

Listed:
  • Treena Basu

    (Department of Mathematics, Occidental College, Los Angeles, CA 90041, USA
    These authors contributed equally to this work.)

  • Olaf Menzer

    (Department of Geography, University of California, Santa Barbara, CA 93117, USA
    These authors contributed equally to this work.)

  • Joshua Ward

    (Department of Statistics, University of California Los Angeles, Los Angeles, CA 90095, USA
    These authors contributed equally to this work.)

  • Indranil SenGupta

    (Department of Mathematics, North Dakota State University, Fargo, ND 58108, USA
    These authors contributed equally to this work.)

Abstract

Stock trading has tremendous importance not just as a profession but also as an income source for individuals. Many investment account holders use the appreciation of their portfolio (as a combination of stocks or indexes) as income for their retirement years, mostly betting on stocks or indexes with low risk/low volatility. However, every stock-based investment portfolio has an inherent risk to lose money through negative progression and crash. This study presents a novel technique to predict such rare negative events in financial time series (e.g., a drop in the S&P 500 by a certain percent in a designated period of time). We use a time series of approximately seven years (2517 values) of the S&P 500 index stocks with publicly available features: the high, low and close price (HLC). We utilize a Siamese type neural network for pattern recognition in images followed by a bootstrapped image similarity distribution to predict rare events as they pertain to financial market analysis. Extending on literature about rare event classification and stochastic modeling in financial analytics, the proposed method uses a sliding window to store the input features as tabular data (HLC price), creates an image of the time series window, and then uses the feature vector of a pre-trained convolutional neural network (CNN) to leverage pre-event images and predict rare events. This research does not just indicate that our proposed method is capable of distinguishing event images from non-event images, but more importantly, the method is effective even when only limited and strongly imbalanced data is available.

Suggested Citation

  • Treena Basu & Olaf Menzer & Joshua Ward & Indranil SenGupta, 2022. "A Novel Implementation of Siamese Type Neural Networks in Predicting Rare Fluctuations in Financial Time Series," Risks, MDPI, vol. 10(2), pages 1-16, February.
  • Handle: RePEc:gam:jrisks:v:10:y:2022:i:2:p:39-:d:747578
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/10/2/39/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/10/2/39/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Farias Nazário, Rodolfo Toríbio & e Silva, Jéssica Lima & Sobreiro, Vinicius Amorim & Kimura, Herbert, 2017. "A literature review of technical analysis on stock markets," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 115-126.
    2. Jenni L. Bettman & Stephen J. Sault & Emma L. Schultz, 2009. "Fundamental and technical analysis: substitutes or complements?," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 49(1), pages 21-36, March.
    3. Humayra Shoshi & Indranil SenGupta, 2020. "Hedging and machine learning driven crude oil data analysis using a refined Barndorff-Nielsen and Shephard model," Papers 2004.14862, arXiv.org, revised Feb 2021.
    4. Andre Esteva & Brett Kuprel & Roberto A. Novoa & Justin Ko & Susan M. Swetter & Helen M. Blau & Sebastian Thrun, 2017. "Dermatologist-level classification of skin cancer with deep neural networks," Nature, Nature, vol. 542(7639), pages 115-118, February.
    5. Semere Habtemicael & Indranil SenGupta, 2016. "Pricing variance and volatility swaps for Barndorff-Nielsen and Shephard process driven financial markets," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 1-35, December.
    6. Semere Habtemicael & Indranil Sengupta, 2016. "Pricing Covariance Swaps For Barndorff–Nielsen And Shephard Process Driven Financial Markets," Annals of Financial Economics (AFE), World Scientific Publishing Co. Pte. Ltd., vol. 11(03), pages 1-32, September.
    7. Minglian Lin & Indranil SenGupta, 2021. "Analysis of optimal portfolio on finite and small time horizons for a stochastic volatility market model," Papers 2104.06293, arXiv.org.
    8. Shubham Ekapure & Nuruddin Jiruwala & Sohan Patnaik & Indranil SenGupta, 2021. "A data-science-driven short-term analysis of Amazon, Apple, Google, and Microsoft stocks," Papers 2107.14695, arXiv.org.
    9. Jinyan Li & Lian-sheng Liu & Simon Fong & Raymond K Wong & Sabah Mohammed & Jinan Fiaidhi & Yunsick Sung & Kelvin K L Wong, 2017. "Adaptive Swarm Balancing Algorithms for rare-event prediction in imbalanced healthcare data," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-25, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang Dexiang & Mu Shengdong & Yunjie Liu & Gu Jijian & Lien Chaolung, 2023. "An Improved Deep-Learning-Based Financial Market Forecasting Model in the Digital Economy," Mathematics, MDPI, vol. 11(6), pages 1-18, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicholas Salmon & Indranil SenGupta, 2021. "Fractional Barndorff-Nielsen and Shephard model: applications in variance and volatility swaps, and hedging," Papers 2105.02325, arXiv.org.
    2. Shantanu Awasthi & Indranil SenGupta, 2020. "First exit-time analysis for an approximate Barndorff-Nielsen and Shephard model with stationary self-decomposable variance process," Papers 2006.07167, arXiv.org, revised Jan 2021.
    3. Nicholas Salmon & Indranil SenGupta, 2021. "Fractional Barndorff-Nielsen and Shephard model: applications in variance and volatility swaps, and hedging," Annals of Finance, Springer, vol. 17(4), pages 529-558, December.
    4. Camillo Lento & Nikola Gradojevic, 2022. "The Profitability of Technical Analysis during the COVID-19 Market Meltdown," JRFM, MDPI, vol. 15(5), pages 1-19, April.
    5. Chen Mao & Guanqi Liu & Yuwen Wang, 2021. "A Closed-Form Pricing Formula for Log-Return Variance Swaps under Stochastic Volatility and Stochastic Interest Rate," Mathematics, MDPI, vol. 10(1), pages 1-17, December.
    6. Takuji Arai, 2019. "Pricing And Hedging Of Vix Options For Barndorff-Nielsen And Shephard Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-26, December.
    7. Aziz Issaka & Indranil SenGupta, 2017. "Analysis of variance based instruments for Ornstein–Uhlenbeck type models: swap and price index," Annals of Finance, Springer, vol. 13(4), pages 401-434, November.
    8. Semere Habtemicael & Musie Ghebremichael & Indranil SenGupta, 2019. "Volatility and Variance Swap Using Superposition of the Barndorff-Nielsen and Shephard type Lévy Processes," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 81(1), pages 75-92, June.
    9. Takuji Arai, 2019. "Pricing and hedging of VIX options for Barndorff-Nielsen and Shephard models," Papers 1904.12260, arXiv.org.
    10. Michael Roberts & Indranil SenGupta, 2020. "Sequential hypothesis testing in machine learning, and crude oil price jump size detection," Papers 2004.08889, arXiv.org, revised Dec 2020.
    11. Michael Roberts & Indranil SenGupta, 2020. "Infinitesimal generators for two-dimensional Lévy process-driven hypothesis testing," Annals of Finance, Springer, vol. 16(1), pages 121-139, March.
    12. Michael Roberts & Indranil SenGupta, 2019. "Infinitesimal generators for two-dimensional L\'evy process-driven hypothesis testing," Papers 1911.08412, arXiv.org.
    13. Humayra Shoshi & Indranil SenGupta, 2020. "Hedging and machine learning driven crude oil data analysis using a refined Barndorff-Nielsen and Shephard model," Papers 2004.14862, arXiv.org, revised Feb 2021.
    14. Shubham Ekapure & Nuruddin Jiruwala & Sohan Patnaik & Indranil SenGupta, 2021. "A data-science-driven short-term analysis of Amazon, Apple, Google, and Microsoft stocks," Papers 2107.14695, arXiv.org.
    15. Xu, De-xuan & Yang, Ben-zhang & Kang, Jian-hao & Huang, Nan-jing, 2021. "Variance and volatility swaps valuations with the stochastic liquidity risk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 566(C).
    16. Anatoliy Swishchuk & Zijia Wang, 2017. "Variance and Volatility Swaps and Futures Pricing for Stochastic Volatility Models," Papers 1712.02735, arXiv.org.
    17. Dhanya Jothimani & Ravi Shankar & Surendra S. Yadav, 2016. "Discrete Wavelet Transform-Based Prediction of Stock Index: A Study on National Stock Exchange Fifty Index," Papers 1605.07278, arXiv.org.
    18. Eero Pätäri & Timo Leivo, 2017. "A Closer Look At Value Premium: Literature Review And Synthesis," Journal of Economic Surveys, Wiley Blackwell, vol. 31(1), pages 79-168, February.
    19. Lin Lu & Laurent Dercle & Binsheng Zhao & Lawrence H. Schwartz, 2021. "Deep learning for the prediction of early on-treatment response in metastatic colorectal cancer from serial medical imaging," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    20. Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:10:y:2022:i:2:p:39-:d:747578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.