IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i3p510-d1583031.html
   My bibliography  Save this article

Improved Confidence Intervals for Expectiles

Author

Listed:
  • Spiridon Penev

    (Department of Statistics, The University of New South Wales Sydney, Kensington, NSW 2052, Australia
    These authors contributed equally to this work.)

  • Yoshihiko Maesono

    (Department of Mathematics, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551, Japan
    These authors contributed equally to this work.)

Abstract

Expectiles were introduced to statistics around 40 years ago, but have recently gained renewed interest due to their relevance in financial risk management. In particular, the 2007–2009 global financial crisis highlighted the need for more robust risk evaluation tools, leading to the adoption of inference methods for expectiles. While first-order asymptotic inference results for expectiles are well established, higher-order asymptotic results remain underdeveloped. This study aims to fill that gap by deriving higher-order asymptotic results for expectiles, ultimately improving the accuracy of confidence intervals. The paper outlines the derivation of the Edgeworth expansion for both the standardized and studentized versions of the kernel-based estimator of the expectile, using large deviation results on U -statistics. The expansion is then inverted to construct more precise confidence intervals for the expectile. These theoretical results were applied to moderate sample sizes ranging from 20 to 200. To demonstrate the advantages of this methodology, an example from risk management is presented. The enhanced confidence intervals consistently outperformed those based on the first-order normal approximation. The methodology introduced in this paper can also be extended to other contexts.

Suggested Citation

  • Spiridon Penev & Yoshihiko Maesono, 2025. "Improved Confidence Intervals for Expectiles," Mathematics, MDPI, vol. 13(3), pages 1-27, February.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:510-:d:1583031
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/3/510/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/3/510/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gneiting, Tilmann, 2011. "Making and Evaluating Point Forecasts," Journal of the American Statistical Association, American Statistical Association, vol. 106(494), pages 746-762.
    2. Yoshihiko Maesono & Spiridon Penev, 2013. "Improved confidence intervals for quantiles," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 65(1), pages 167-189, February.
    3. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    4. Bellini, Fabio, 2012. "Isotonicity properties of generalized quantiles," Statistics & Probability Letters, Elsevier, vol. 82(11), pages 2017-2024.
    5. Yoshihiko Maesono & Spiridon Penev, 2011. "Edgeworth expansion for the kernel quantile estimator," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 63(3), pages 617-644, June.
    6. Newey, Whitney K & Powell, James L, 1987. "Asymmetric Least Squares Estimation and Testing," Econometrica, Econometric Society, vol. 55(4), pages 819-847, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edgars Jakobsons & Steven Vanduffel, 2015. "Dependence Uncertainty Bounds for the Expectile of a Portfolio," Risks, MDPI, vol. 3(4), pages 1-25, December.
    2. Chi, Yichun & Liu, Fangda, 2017. "Optimal insurance design in the presence of exclusion clauses," Insurance: Mathematics and Economics, Elsevier, vol. 76(C), pages 185-195.
    3. Said Khalil, 2022. "Expectile-based capital allocation," Working Papers hal-03816525, HAL.
    4. Dingshi Tian & Zongwu Cai & Ying Fang, 2018. "Econometric Modeling of Risk Measures: A Selective Review of the Recent Literature," WORKING PAPERS SERIES IN THEORETICAL AND APPLIED ECONOMICS 201807, University of Kansas, Department of Economics, revised Oct 2018.
    5. Qinyu Wu & Fan Yang & Ping Zhang, 2023. "Conditional generalized quantiles based on expected utility model and equivalent characterization of properties," Papers 2301.12420, arXiv.org.
    6. Maziar Sahamkhadam, 2021. "Dynamic copula-based expectile portfolios," Journal of Asset Management, Palgrave Macmillan, vol. 22(3), pages 209-223, May.
    7. Ruodu Wang & Yunran Wei, 2020. "Risk functionals with convex level sets," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1337-1367, October.
    8. Véronique Maume-Deschamps & Didier Rullière & Khalil Said, 2017. "Multivariate Extensions Of Expectiles Risk Measures," Working Papers hal-01367277, HAL.
    9. Fissler Tobias & Ziegel Johanna F., 2021. "On the elicitability of range value at risk," Statistics & Risk Modeling, De Gruyter, vol. 38(1-2), pages 25-46, January.
    10. Johanna F. Ziegel, 2013. "Coherence and elicitability," Papers 1303.1690, arXiv.org, revised Mar 2014.
    11. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    12. Hoga, Yannick, 2021. "The uncertainty in extreme risk forecasts from covariate-augmented volatility models," International Journal of Forecasting, Elsevier, vol. 37(2), pages 675-686.
    13. Collin Philipps, 2022. "Interpreting Expectiles," Working Papers 2022-01, Department of Economics and Geosciences, US Air Force Academy.
    14. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    15. Tadese, Mekonnen & Drapeau, Samuel, 2020. "Relative bound and asymptotic comparison of expectile with respect to expected shortfall," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 387-399.
    16. Tobias Fissler & Jana Hlavinová & Birgit Rudloff, 2021. "Elicitability and identifiability of set-valued measures of systemic risk," Finance and Stochastics, Springer, vol. 25(1), pages 133-165, January.
    17. David Happersberger & Harald Lohre & Ingmar Nolte, 2020. "Estimating portfolio risk for tail risk protection strategies," European Financial Management, European Financial Management Association, vol. 26(4), pages 1107-1146, September.
    18. Valeria Bignozzi & Luca Merlo & Lea Petrella, 2022. "Inter-order relations between moments of a Student $t$ distribution, with an application to $L_p$-quantiles," Papers 2209.12855, arXiv.org.
    19. Richard Gerlach & Chao Wang, 2016. "Bayesian Semi-parametric Realized-CARE Models for Tail Risk Forecasting Incorporating Realized Measures," Papers 1612.08488, arXiv.org.
    20. Tobias Fissler & Johanna F. Ziegel, 2019. "Evaluating Range Value at Risk Forecasts," Papers 1902.04489, arXiv.org, revised Nov 2020.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:3:p:510-:d:1583031. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.