IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i8p1840-d1122162.html
   My bibliography  Save this article

The Effects of Heat Transfer through the Ends of a Cylindrical Cavity on Acoustic Streaming and Gas Temperature

Author

Listed:
  • Amir A. Gubaidullin

    (Tyumen Branch of the Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, 625026 Tyumen, Russia
    Department of Applied and Technical Physics, University of Tyumen, 625003 Tyumen, Russia)

  • Anna V. Pyatkova

    (Tyumen Branch of the Khristianovich Institute of Theoretical and Applied Mechanics SB RAS, 625026 Tyumen, Russia)

Abstract

The longitudinal vibrational motion of a cylindrical cavity with gas, in which the acoustic streaming occurs, is considered. The motion is described by the system of equations for the dynamics and thermal conductivity of a viscous perfect gas, written in a cylindrical coordinate system associated with the cavity. The system of equations is solved numerically by the finite volume method with an implicit staggered grid scheme, while the convective–diffusion fluxes are approximated by the power law scheme. According to the boundary conditions, the lateral surface of the cavity is maintained at a constant equal initial temperature. The effects of heat transfer through the ends of the cavity are studied. Heat transfer is given by isothermal boundary conditions. The obtained solutions are compared with the solutions under adiabatic boundary conditions. It is shown for the first time that the effects of heat transfer manifest themselves with an increase in the nonlinearity of the process; when the frequency and amplitude of vibration increase, this is also facilitated by an increase in the radius of the cavity. The effects of heat transfer on the period average temperature, on the streaming velocity and on structure are established.

Suggested Citation

  • Amir A. Gubaidullin & Anna V. Pyatkova, 2023. "The Effects of Heat Transfer through the Ends of a Cylindrical Cavity on Acoustic Streaming and Gas Temperature," Mathematics, MDPI, vol. 11(8), pages 1-14, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1840-:d:1122162
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/8/1840/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/8/1840/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Błażej Baran & Krystian Machaj & Ziemowit Malecha & Krzysztof Tomczuk, 2022. "Numerical Study of Baroclinic Acoustic Streaming Phenomenon for Various Flow Parameters," Energies, MDPI, vol. 15(3), pages 1-21, January.
    2. Gongbo Long & Yingjie Liu & Wanrong Xu & Peng Zhou & Jiaqi Zhou & Guanshui Xu & Boqi Xiao, 2022. "Analysis of Crack Problems in Multilayered Elastic Medium by a Consecutive Stiffness Method," Mathematics, MDPI, vol. 10(23), pages 1-16, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aušra Gadeikytė & Aušra Abraitienė & Rimantas Barauskas, 2023. "Application of Combined Micro- and Macro-Scale Models to Investigate Heat and Mass Transfer through Textile Structures with Additional Ventilation," Mathematics, MDPI, vol. 11(11), pages 1-20, May.
    2. Kristina Kaulakytė & Nikolajus Kozulinas & Grigory Panasenko & Konstantinas Pileckas & Vytenis Šumskas, 2023. "Poiseuille-Type Approximations for Axisymmetric Flow in a Thin Tube with Thin Stiff Elastic Wall," Mathematics, MDPI, vol. 11(9), pages 1-18, April.
    3. Xianhui Mao & Ankui Hu & Rui Zhao & Fei Wang & Mengkun Wu, 2023. "Evaluation and Application of Surrounding Rock Stability Based on an Improved Fuzzy Comprehensive Evaluation Method," Mathematics, MDPI, vol. 11(14), pages 1-19, July.
    4. Tong Wang & Yang Liu & Qiyuan Li & Peng Du & Xiaogong Zheng & Qingfei Gao, 2023. "State-of-the-Art Review of the Resilience of Urban Bridge Networks," Sustainability, MDPI, vol. 15(2), pages 1-18, January.
    5. Lei Lan & Jiaqi Zhou & Wanrong Xu & Gongbo Long & Boqi Xiao & Guanshui Xu, 2023. "A Boundary-Element Analysis of Crack Problems in Multilayered Elastic Media: A Review," Mathematics, MDPI, vol. 11(19), pages 1-24, September.
    6. Ioan Száva & Sorin Vlase & Ildikó-Renáta Száva & Gábor Turzó & Violeta Mihaela Munteanu & Teofil Gălățanu & Zsolt Asztalos & Botond-Pál Gálfi, 2023. "Modern Dimensional Analysis-Based Heat Transfer Analysis: Normalized Heat Transfer Curves," Mathematics, MDPI, vol. 11(3), pages 1-33, February.
    7. Igor Korobiichuk & Viktorij Mel’nick & Vladyslav Shybetskyi & Sergii Kostyk & Myroslava Kalinina, 2022. "Optimization of Heat Exchange Plate Geometry by Modeling Physical Processes Using CAD," Energies, MDPI, vol. 15(4), pages 1-18, February.
    8. Abdullah Alsoboh & Ala Amourah & Maslina Darus & Rami Issa Al Sharefeen, 2023. "Applications of Neutrosophic q -Poisson distribution Series for Subclass of Analytic Functions and Bi-Univalent Functions," Mathematics, MDPI, vol. 11(4), pages 1-10, February.
    9. Jianmin Wen & Haoyu Yao & Qian Yan & Bindi You, 2023. "Research on Time-Varying Meshing Stiffness of Marine Beveloid Gear System," Mathematics, MDPI, vol. 11(23), pages 1-26, November.
    10. Jingwei Yao & Hong Zhang, 2023. "Comparing Darcy’s Law and the Brinkman Equation for Numerical Simulations of Saltwater Intrusion," Sustainability, MDPI, vol. 15(18), pages 1-16, September.
    11. Muhammad Haziq Iqmal Mohd Nordin & Khairum Bin Hamzah & Najiyah Safwa Khashi’ie & Iskandar Waini & Nik Mohd Asri Nik Long & Saadatul Fitri, 2023. "Formulation for Multiple Cracks Problem in Thermoelectric-Bonded Materials Using Hypersingular Integral Equations," Mathematics, MDPI, vol. 11(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1840-:d:1122162. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.