IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i14p3069-d1191831.html
   My bibliography  Save this article

An Overview of Forecast Analysis with ARIMA Models during the COVID-19 Pandemic: Methodology and Case Study in Brazil

Author

Listed:
  • Raydonal Ospina

    (Department of Statistics, Universidade Federal de Pernambuco, Recife 50670-901, Brazil
    Department of Statistics, Universidade Federal da Bahia, Salvador 40170-110, Brazil)

  • João A. M. Gondim

    (Department of Mathematics, Universidade Federal de Pernambuco, Recife 50670-901, Brazil)

  • Víctor Leiva

    (School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile)

  • Cecilia Castro

    (Centre of Mathematics, Universidade do Minho, 4710-057 Braga, Portugal)

Abstract

This comprehensive overview focuses on the issues presented by the pandemic due to COVID-19, understanding its spread and the wide-ranging effects of government-imposed restrictions. The overview examines the utility of autoregressive integrated moving average (ARIMA) models, which are often overlooked in pandemic forecasting due to perceived limitations in handling complex and dynamic scenarios. Our work applies ARIMA models to a case study using data from Recife, the capital of Pernambuco, Brazil, collected between March and September 2020. The research provides insights into the implications and adaptability of predictive methods in the context of a global pandemic. The findings highlight the ARIMA models’ strength in generating accurate short-term forecasts, crucial for an immediate response to slow down the disease’s rapid spread. Accurate and timely predictions serve as the basis for evidence-based public health strategies and interventions, greatly assisting in pandemic management. Our model selection involves an automated process optimizing parameters by using autocorrelation and partial autocorrelation plots, as well as various precise measures. The performance of the chosen ARIMA model is confirmed when comparing its forecasts with real data reported after the forecast period. The study successfully forecasts both confirmed and recovered COVID-19 cases across the preventive plan phases in Recife. However, limitations in the model’s performance are observed as forecasts extend into the future. By the end of the study period, the model’s error substantially increased, and it failed to detect the stabilization and deceleration of cases. The research highlights challenges associated with COVID-19 data in Brazil, such as under-reporting and data recording delays. Despite these limitations, the study emphasizes the potential of ARIMA models for short-term pandemic forecasting while emphasizing the need for further research to enhance long-term predictions.

Suggested Citation

  • Raydonal Ospina & João A. M. Gondim & Víctor Leiva & Cecilia Castro, 2023. "An Overview of Forecast Analysis with ARIMA Models during the COVID-19 Pandemic: Methodology and Case Study in Brazil," Mathematics, MDPI, vol. 11(14), pages 1-18, July.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3069-:d:1191831
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/14/3069/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/14/3069/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Víctor Leiva & Helton Saulo & Rubens Souza & Robert G. Aykroyd & Roberto Vila, 2021. "A new BISARMA time series model for forecasting mortality using weather and particulate matter data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(2), pages 346-364, March.
    2. Chakraborty, Tanujit & Ghosh, Indrajit, 2020. "Real-time forecasts and risk assessment of novel coronavirus (COVID-19) cases: A data-driven analysis," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    3. Mohammed Talha Alam & Shahab Saquib Sohail & Syed Ubaid & Shakil & Zafar Ali & Mohammad Hijji & Abdul Khader Jilani Saudagar & Khan Muhammad, 2022. "It’s Your Turn, Are You Ready to Get Vaccinated? Towards an Exploration of Vaccine Hesitancy Using Sentiment Analysis of Instagram Posts," Mathematics, MDPI, vol. 10(22), pages 1-17, November.
    4. Gondim, João A.M. & Machado, Larissa, 2020. "Optimal quarantine strategies for the COVID-19 pandemic in a population with a discrete age structure," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    5. Chimmula, Vinay Kumar Reddy & Zhang, Lei, 2020. "Time series forecasting of COVID-19 transmission in Canada using LSTM networks," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
    6. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    7. Publio Darío Cortés-Carvajal & Mitzi Cubilla-Montilla & David Ricardo González-Cortés, 2022. "Estimation of the Instantaneous Reproduction Number and Its Confidence Interval for Modeling the COVID-19 Pandemic," Mathematics, MDPI, vol. 10(2), pages 1-30, January.
    8. Zhuang, Liangliang & Xu, Ancha & Wang, Xiao-Lin, 2023. "A prognostic driven predictive maintenance framework based on Bayesian deep learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Luo, Chunling & Shen, Lijuan & Xu, Ancha, 2022. "Modelling and estimation of system reliability under dynamic operating environments and lifetime ordering constraints," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    10. Phi-Hung Nguyen & Jung-Fa Tsai & Ming-Hua Lin & Yi-Chung Hu, 2021. "A Hybrid Model with Spherical Fuzzy-AHP, PLS-SEM and ANN to Predict Vaccination Intention against COVID-19," Mathematics, MDPI, vol. 9(23), pages 1-26, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Raydonal Ospina & Jaciele Oliveira & Cristiano Ferraz & André Leite & João Gondim, 2023. "Ensemble Algorithms to Improve COVID-19 Growth Curve Estimates," Stats, MDPI, vol. 6(4), pages 1-18, September.
    2. Ahmed Nazmus Sakib & Talayeh Razzaghi & Md Monjur Hossain Bhuiyan, 2023. "Forecasting the Fuel Consumption and Price for a Future Pandemic Outbreak: A Case Study in the USA under COVID-19," Sustainability, MDPI, vol. 15(17), pages 1-26, August.
    3. Md Monjur Hossain Bhuiyan & Ahmed Nazmus Sakib & Syed Ishmam Alawee & Talayeh Razzaghi, 2024. "Fueling the Future: A Comprehensive Analysis and Forecast of Fuel Consumption Trends in U.S. Electricity Generation," Sustainability, MDPI, vol. 16(6), pages 1-30, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Crokidakis, Nuno, 2020. "COVID-19 spreading in Rio de Janeiro, Brazil: Do the policies of social isolation really work?," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
    2. Amel Abd-El-Monem & Mohamed S. Eliwa & Mahmoud El-Morshedy & Afrah Al-Bossly & Rashad M. EL-Sagheer, 2023. "Statistical Analysis and Theoretical Framework for a Partially Accelerated Life Test Model with Progressive First Failure Censoring Utilizing a Power Hazard Distribution," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
    3. Lalmuanawma, Samuel & Hussain, Jamal & Chhakchhuak, Lalrinfela, 2020. "Applications of machine learning and artificial intelligence for Covid-19 (SARS-CoV-2) pandemic: A review," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    4. Nikola Anđelić & Sandi Baressi Šegota & Ivan Lorencin & Zdravko Jurilj & Tijana Šušteršič & Anđela Blagojević & Alen Protić & Tomislav Ćabov & Nenad Filipović & Zlatan Car, 2021. "Estimation of COVID-19 Epidemiology Curve of the United States Using Genetic Programming Algorithm," IJERPH, MDPI, vol. 18(3), pages 1-26, January.
    5. Gaetano Perone, 2022. "Comparison of ARIMA, ETS, NNAR, TBATS and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(6), pages 917-940, August.
    6. Kırbaş, İsmail & Sözen, Adnan & Tuncer, Azim Doğuş & Kazancıoğlu, Fikret Şinasi, 2020. "Comparative analysis and forecasting of COVID-19 cases in various European countries with ARIMA, NARNN and LSTM approaches," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    7. Jelena Musulin & Sandi Baressi Šegota & Daniel Štifanić & Ivan Lorencin & Nikola Anđelić & Tijana Šušteršič & Anđela Blagojević & Nenad Filipović & Tomislav Ćabov & Elitza Markova-Car, 2021. "Application of Artificial Intelligence-Based Regression Methods in the Problem of COVID-19 Spread Prediction: A Systematic Review," IJERPH, MDPI, vol. 18(8), pages 1-39, April.
    8. Zhao, Xinxing & Li, Kainan & Ang, Candice Ke En & Ho, Andrew Fu Wah & Liu, Nan & Ong, Marcus Eng Hock & Cheong, Kang Hao, 2022. "A deep learning architecture for forecasting daily emergency department visits with acuity levels," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    9. Rafael Pérez Abreu C. & Samantha Estrada & Héctor de-la-Torre-Gutiérrez, 2021. "A Two-Step Polynomial and Nonlinear Growth Approach for Modeling COVID-19 Cases in Mexico," Mathematics, MDPI, vol. 9(18), pages 1-18, September.
    10. Perone, G., 2020. "Comparison of ARIMA, ETS, NNAR and hybrid models to forecast the second wave of COVID-19 hospitalizations in Italy," Health, Econometrics and Data Group (HEDG) Working Papers 20/18, HEDG, c/o Department of Economics, University of York.
    11. Sergio Contreras-Espinoza & Francisco Novoa-Muñoz & Szabolcs Blazsek & Pedro Vidal & Christian Caamaño-Carrillo, 2022. "COVID-19 Active Case Forecasts in Latin American Countries Using Score-Driven Models," Mathematics, MDPI, vol. 11(1), pages 1-17, December.
    12. da Silva, Ramon Gomes & Ribeiro, Matheus Henrique Dal Molin & Mariani, Viviana Cocco & Coelho, Leandro dos Santos, 2020. "Forecasting Brazilian and American COVID-19 cases based on artificial intelligence coupled with climatic exogenous variables," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    13. Rohitash Chandra & Yixuan He, 2021. "Bayesian neural networks for stock price forecasting before and during COVID-19 pandemic," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-32, July.
    14. Haiping Ren & Xue Hu, 2023. "Bayesian Estimations of Shannon Entropy and Rényi Entropy of Inverse Weibull Distribution," Mathematics, MDPI, vol. 11(11), pages 1-16, May.
    15. Kalantari, Mahdi, 2021. "Forecasting COVID-19 pandemic using optimal singular spectrum analysis," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    16. Vaishnav, Vaibhav & Vajpai, Jayashri, 2020. "Assessment of impact of relaxation in lockdown and forecast of preparation for combating COVID-19 pandemic in India using Group Method of Data Handling," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).
    17. Essam A. Ahmed & Mahmoud El-Morshedy & Laila A. Al-Essa & Mohamed S. Eliwa, 2023. "Statistical Inference on the Entropy Measures of Gamma Distribution under Progressive Censoring: EM and MCMC Algorithms," Mathematics, MDPI, vol. 11(10), pages 1-30, May.
    18. Huda M. Alshanbari & Zubair Ahmad & Hazem Al-Mofleh & Clement Boateng Ampadu & Saima K. Khosa, 2023. "A New Probabilistic Approach: Estimation and Monte Carlo Simulation with Applications to Time-to-Event Data," Mathematics, MDPI, vol. 11(7), pages 1-30, March.
    19. Tayarani N., Mohammad-H., 2021. "Applications of artificial intelligence in battling against covid-19: A literature review," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    20. Wang, Peipei & Zheng, Xinqi & Ai, Gang & Liu, Dongya & Zhu, Bangren, 2020. "Time series prediction for the epidemic trends of COVID-19 using the improved LSTM deep learning method: Case studies in Russia, Peru and Iran," Chaos, Solitons & Fractals, Elsevier, vol. 140(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:14:p:3069-:d:1191831. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.