IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v9y2020i9p329-d414356.html
   My bibliography  Save this article

Effects of Different Fertilizer Treatments on Rhizosphere Soil Microbiome Composition and Functions

Author

Listed:
  • Yanan Li

    (College of Resources and Environment, Jilin Agricultural University, Changchun 130000, China
    Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, Changchun 130000, China)

  • Chengyu Wang

    (College of Resources and Environment, Jilin Agricultural University, Changchun 130000, China
    Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, Changchun 130000, China)

  • Tianye Wang

    (College of Resources and Environment, Jilin Agricultural University, Changchun 130000, China)

  • Yutao Liu

    (Qiqihar Branch Institute of Heilongjiang Academy of Agricultural Sciences, Qiqihar 161000, China)

  • Shuxia Jia

    (Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China)

  • Yunhang Gao

    (College of Animal Science and Technology, Jilin Agricultural University, Changchun 130000, China)

  • Shuxia Liu

    (College of Resources and Environment, Jilin Agricultural University, Changchun 130000, China
    Key Laboratory of Soil Resource Sustainable Utilization for Jilin Province Commodity Grain Bases, Changchun 130000, China)

Abstract

Fertilization influences the soil microbiome. However, little is known about the effects of long-term fertilization on soil microbial metabolic pathways. In this study, we investigated the soil microbiome composition and function and microbial participation in the N cycle according to the Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) functional annotation of different genes in a metagenomic analysis after long-term fertilization. Fertilizer application significantly changed the soil C/N ratio. Chemical fertilizer (NPK) treatment decreased soil pH, and chemical fertilizer combined with straw (NPK+S0.5) treatment increased ammonium nitrogen (NH 4 + -N) but decreased nitrate nitrogen (NO 3 − -N). NPK, NPK+S0.5 and S0.5 applications did not change the soil microbiome composition or dominant phylum but changed the relative abundances of microbiome components. Moreover, fertilizer significantly influenced metabolic processes, cellular processes and single-organism processes. Compared with a no-fertilizer treatment (CK), the NPK treatment resulted in more differentially expressed gene (DEG) pathways than the NPK+S0.5 and S0.5 treatments, and these pathways significantly correlated with soil nitrate nitrogen (NO 3 − -N), available phosphorus (AP) and the moisture content of soil (MC). KEGG analysis found that fertilizer application mainly affected the ribosome, photosynthesis and oxidative phosphorylation pathways. S0.5 and NPK+S0.5 increased microbial nitrogen fixation, and NPK and NPK+S0.5 decreased amoA and amoB and accelerated denitrification. Thus, organic fertilizer increased N fixation and nitrification, and inorganic N fertilizer accelerated denitrification. We found that the function of the soil microbiome under different fertilizer applications could be important for the rational application of fertilizer and for environmental and sustainable development.

Suggested Citation

  • Yanan Li & Chengyu Wang & Tianye Wang & Yutao Liu & Shuxia Jia & Yunhang Gao & Shuxia Liu, 2020. "Effects of Different Fertilizer Treatments on Rhizosphere Soil Microbiome Composition and Functions," Land, MDPI, vol. 9(9), pages 1-19, September.
  • Handle: RePEc:gam:jlands:v:9:y:2020:i:9:p:329-:d:414356
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/9/9/329/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/9/9/329/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nicolas Gruber & James N. Galloway, 2008. "An Earth-system perspective of the global nitrogen cycle," Nature, Nature, vol. 451(7176), pages 293-296, January.
    2. Muhammad Tayyab & Waqar Islam & Yasir Arafat & Ziqin Pang & Caifang Zhang & Yu Lin & Muhammad Waqas & Sheng Lin & Wenxiong Lin & Hua Zhang, 2018. "Effect of Sugarcane Straw and Goat Manure on Soil Nutrient Transformation and Bacterial Communities," Sustainability, MDPI, vol. 10(7), pages 1-21, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen Yuan & Shaobing Peng, 2017. "Exploring the Trends in Nitrogen Input and Nitrogen Use Efficiency for Agricultural Sustainability," Sustainability, MDPI, vol. 9(10), pages 1-15, October.
    2. Keikha, Mahdi & Darzi- Naftchali, Abdullah & Motevali, Ali & Valipour, Mohammad, 2023. "Effect of nitrogen management on the environmental and economic sustainability of wheat production in different climates," Agricultural Water Management, Elsevier, vol. 276(C).
    3. Auguères, Anne-Sophie & Loreau, Michel, 2016. "Biotic regulation of non-limiting nutrient pools and coupling of biogeochemical cycles," Ecological Modelling, Elsevier, vol. 334(C), pages 1-7.
    4. Xiaochen Lu & Binjie Li & Guangsheng Chen, 2023. "Responses of Soil CO 2 Emission and Tree Productivity to Nitrogen and Phosphorus Additions in a Nitrogen-Rich Subtropical Chinese Fir Plantation," Sustainability, MDPI, vol. 15(12), pages 1-15, June.
    5. Yuhang Jiang & Yasir Arafat & Puleng Letuma & Liaqat Ali & Muhammad Tayyab & Muhammad Waqas & Yanchun Li & Weiwei Lin & Sheng Lin & Wenxiong Lin, 2019. "Restoration of Long-Term Monoculture Degraded Tea Orchard by Green and Goat Manures Applications System," Sustainability, MDPI, vol. 11(4), pages 1-20, February.
    6. Florian Rabitz & Alin Olteanu & Jurgita Jurkevičienė & Agnė Budžytė, 2021. "A topic network analysis of the system turn in the environmental sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(3), pages 2107-2140, March.
    7. Chengpeng Zhang & Yu Ye & Xiuqi Fang & Hansunbai Li & Xue Zheng, 2020. "Coincidence Analysis of the Cropland Distribution of Multi-Sets of Global Land Cover Products," IJERPH, MDPI, vol. 17(3), pages 1-17, January.
    8. Sangha, Laljeet & Shortridge, Julie & Frame, William, 2023. "The impact of nitrogen treatment and short-term weather forecast data in irrigation scheduling of corn and cotton on water and nutrient use efficiency in humid climates," Agricultural Water Management, Elsevier, vol. 283(C).
    9. Huang, Suo & Bartlett, Paul & Arain, M. Altaf, 2016. "An analysis of global terrestrial carbon, water and energy dynamics using the carbon–nitrogen coupled CLASS-CTEMN+ model," Ecological Modelling, Elsevier, vol. 336(C), pages 36-56.
    10. L.J. Li & D.H. Zeng & R. Mao & Z.Y. Yu, 2012. "Nitrogen and phosphorus resorption of Artemisia scoparia, Chenopodium acuminatum, Cannabis sativa, and Phragmites communis under nitrogen and phosphorus additions in a semiarid grassland, China," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 58(10), pages 446-451.
    11. Yusen Chen & Shihang Zhang & Yongdong Wang, 2022. "Distribution Characteristics and Drivers of Soil Carbon and Nitrogen in the Drylands of Central Asia," Land, MDPI, vol. 11(10), pages 1-12, October.
    12. Charles A. Taylor & Geoffrey Heal, 2021. "Fertilizer and Algal Blooms: A Satellite Approach to Assessing Water Quality," NBER Chapters, in: Risks in Agricultural Supply Chains, National Bureau of Economic Research, Inc.
    13. Chen, Minpeng & Sun, Fu & Shindo, Junko, 2016. "China’s agricultural nitrogen flows in 2011: Environmental assessment and management scenarios," Resources, Conservation & Recycling, Elsevier, vol. 111(C), pages 10-27.
    14. Rong Zhang & Chuan Li & Huilin Cui & Yanbo Wang & Shaoce Zhang & Pei Li & Yue Hou & Ying Guo & Guojin Liang & Zhaodong Huang & Chao Peng & Chunyi Zhi, 2023. "Electrochemical nitrate reduction in acid enables high-efficiency ammonia synthesis and high-voltage pollutes-based fuel cells," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    15. Smith, Nicola J & McDonald, Garry W & Patterson, Murray G, 2020. "Biogeochemical cycling in the anthropocene: Quantifying global environment-economy exchanges," Ecological Modelling, Elsevier, vol. 418(C).
    16. Gu, Baojing & Liu, Dong & Wu, Xu & Ge, Ying & Min, Yong & Jiang, Hong & Chang, Jie, 2011. "Utilization of waste nitrogen for biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4910-4916.
    17. Zhen-Zhen Zheng & Li-Wei Zheng & Min Nina Xu & Ehui Tan & David A. Hutchins & Wenchao Deng & Yao Zhang & Dalin Shi & Minhan Dai & Shuh-Ji Kao, 2020. "Substrate regulation leads to differential responses of microbial ammonia-oxidizing communities to ocean warming," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    18. Barakat, Mohammad & Cheviron, Bruno & Angulo-Jaramillo, Rafael, 2016. "Influence of the irrigation technique and strategies on the nitrogen cycle and budget: A review," Agricultural Water Management, Elsevier, vol. 178(C), pages 225-238.
    19. Douglas, Niall Edward, 2008. "Modelling the Costs of Climate Change and its Costs of Mitigation: A Scientific Approach," MPRA Paper 13650, University Library of Munich, Germany.
    20. Stops, Marven W. & Sullivan, Pamela L. & Peltier, Edward & Young, Bryan & Brookfield, Andrea E., 2022. "Tracking the hydrologic response of agricultural tile outlet terraces to storm events," Agricultural Water Management, Elsevier, vol. 263(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:9:y:2020:i:9:p:329-:d:414356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.