IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v6y2017i2p42-d101785.html
   My bibliography  Save this article

Monitoring Urban Growth and the Nepal Earthquake 2015 for Sustainability of Kathmandu Valley, Nepal

Author

Listed:
  • Bhagawat Rimal

    (The State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China)

  • Lifu Zhang

    (The State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China)

  • Dongjie Fu

    (State Key Laboratory of Resource and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China)

  • Ripu Kunwar

    (Cultural and Spatial Ecology, Department of Geosciences, Florida Atlantic University, Boca Raton, FL 33431, USA)

  • Yongguang Zhai

    (The State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, Chinese Academy of Sciences, Beijing 100101, China)

Abstract

The exodus of people from rural areas to cities brings many detrimental environmental, social and cultural consequences. Monitoring spatiotemporal change by referencing the historical timeline or incidence has become an important way to analyze urbanization. This study has attempted to attain the cross-sectional analysis of Kathmandu valley that has been plagued by rampant urbanization over the last three decades. The research utilizes Landsat images of Kathmandu valley from 1976 to 2015 for the transition analysis of land use, land cover and urban sprawl for the last four decades. Results showed that the urban coverage of Kathmandu valley has tremendously increased from 20.19 km 2 in 1976 to 39.47 km 2 in 1989 to 78.96 km 2 in 2002 to 139.57 km 2 in 2015, at the cost of cultivated lands, with an average annual urban growth rate of 7.34%, 7.70% and 5.90% in each temporal interval, respectively. In addition, the urban expansion orientation analysis concludes the significant urban concentration in the eastern part, moderately medium in the southwest and relatively less in the western and northwest part of the valley. Urbanization was solely accountable for the exploitation of extant forests, fertile and arable lands and indigenous and cultural landscapes. Unattended fallow lands in suburban areas have compounded the problem by welcoming invasive alien species. Overlaying the highly affected geological formations within the major city centers displays that unless the trend of rapid, unplanned urbanization is discontinued, the future of Kathmandu is at the high risk. Since land use management is a fundamental part of development, we advocate for the appropriate land use planning and policies for sustainable and secure future development.

Suggested Citation

  • Bhagawat Rimal & Lifu Zhang & Dongjie Fu & Ripu Kunwar & Yongguang Zhai, 2017. "Monitoring Urban Growth and the Nepal Earthquake 2015 for Sustainability of Kathmandu Valley, Nepal," Land, MDPI, vol. 6(2), pages 1-23, June.
  • Handle: RePEc:gam:jlands:v:6:y:2017:i:2:p:42-:d:101785
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/6/2/42/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/6/2/42/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Narumasa Tsutsumida & Izuru Saizen & Masayuki Matsuoka & Reiichiro Ishii, 2013. "Land Cover Change Detection in Ulaanbaatar Using the Breaks for Additive Seasonal and Trend Method," Land, MDPI, vol. 2(4), pages 1-16, October.
    2. Melania Michetti & Matteo Zampieri, 2014. "Climate–Human–Land Interactions: A Review of Major Modelling Approaches," Land, MDPI, vol. 3(3), pages 1-41, July.
    3. Bhagawat Rimal & Himlal Baral & Nigel E. Stork & Kiran Paudyal & Sushila Rijal, 2015. "Growing City and Rapid Land Use Transition: Assessing Multiple Hazards and Risks in the Pokhara Valley, Nepal," Land, MDPI, vol. 4(4), pages 1-22, October.
    4. Miguel Castrence & Duong H. Nong & Chinh C. Tran & Luisa Young & Jefferson Fox, 2014. "Mapping Urban Transitions Using Multi-Temporal Landsat and DMSP-OLS Night-Time Lights Imagery of the Red River Delta in Vietnam," Land, MDPI, vol. 3(1), pages 1-19, February.
    5. Kritsana Kityuttachai & Nitin Kumar Tripathi & Taravudh Tipdecho & Rajendra Shrestha, 2013. "CA-Markov Analysis of Constrained Coastal Urban Growth Modeling: Hua Hin Seaside City, Thailand," Sustainability, MDPI, vol. 5(4), pages 1-21, April.
    6. ., 2008. "The Ring of Cities," Chapters, in: Information Revolutions in the History of the West, chapter 2, Edward Elgar Publishing.
    7. Elisa Muzzini & Gabriela Aparicio, 2013. "Urban Growth and Spatial Transition in Nepal : An Initial Assessment," World Bank Publications - Books, The World Bank Group, number 13110, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bhagawat Rimal & Lifu Zhang & Hamidreza Keshtkar & Xuejian Sun & Sushila Rijal, 2018. "Quantifying the Spatiotemporal Pattern of Urban Expansion and Hazard and Risk Area Identification in the Kaski District of Nepal," Land, MDPI, vol. 7(1), pages 1-22, March.
    2. Gyanendra Karki & Balram Bhatta & Naba R. Devkota & Ram P. Acharya & Ripu Mardhan Kunwar, 2022. "Climate change adaptation (CCA) research in Nepal: implications for the advancement of adaptation planning," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(3), pages 1-13, March.
    3. Bhagawat Rimal & Lifu Zhang & Nigel Stork & Sean Sloan & Sushila Rijal, 2018. "Urban Expansion Occurred at the Expense of Agricultural Lands in the Tarai Region of Nepal from 1989 to 2016," Sustainability, MDPI, vol. 10(5), pages 1-19, April.
    4. Sushila Rijal & Bhagawat Rimal & Sean Sloan, 2018. "Flood Hazard Mapping of a Rapidly Urbanizing City in the Foothills (Birendranagar, Surkhet) of Nepal," Land, MDPI, vol. 7(2), pages 1-13, May.
    5. Alina Źróbek-Różańska & Joanna Zielińska-Szczepkowska, 2019. "National Land Use Policy against the Misuse of the Agricultural Land—Causes and Effects. Evidence from Poland," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    6. Ripu M. Kunwar & Aaron Evans & Janardan Mainali & Abdul S. Ansari & Bhagawat Rimal & Rainer W. Bussmann, 2020. "Change in forest and vegetation cover influencing distribution and uses of plants in the Kailash Sacred Landscape, Nepal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 1397-1412, February.
    7. Monika Kopecká & Harini Nagendra & Andrew Millington, 2018. "Urban Land Systems: An Ecosystems Perspective," Land, MDPI, vol. 7(1), pages 1-4, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sushila Rijal & Bhagawat Rimal & Sean Sloan, 2018. "Flood Hazard Mapping of a Rapidly Urbanizing City in the Foothills (Birendranagar, Surkhet) of Nepal," Land, MDPI, vol. 7(2), pages 1-13, May.
    2. Bhagawat Rimal & Lifu Zhang & Hamidreza Keshtkar & Xuejian Sun & Sushila Rijal, 2018. "Quantifying the Spatiotemporal Pattern of Urban Expansion and Hazard and Risk Area Identification in the Kaski District of Nepal," Land, MDPI, vol. 7(1), pages 1-22, March.
    3. Bhagawat Rimal & Lifu Zhang & Nigel Stork & Sean Sloan & Sushila Rijal, 2018. "Urban Expansion Occurred at the Expense of Agricultural Lands in the Tarai Region of Nepal from 1989 to 2016," Sustainability, MDPI, vol. 10(5), pages 1-19, April.
    4. Bhattarai, Keshav & Adhikari, Ambika P. & Gautam, Shiva, 2023. "State of Urbanization in Nepal: The Official Definition and Reality," SocArXiv gbwvk, Center for Open Science.
    5. Behera, Bhagirath & Rahut, Dil Bahadur & Sethi, Narayan, 2020. "Analysis of household access to drinking water, sanitation, and waste disposal services in urban areas of Nepal," Utilities Policy, Elsevier, vol. 62(C).
    6. Brian Pickard & Joshua Gray & Ross Meentemeyer, 2017. "Comparing Quantity, Allocation and Configuration Accuracy of Multiple Land Change Models," Land, MDPI, vol. 6(3), pages 1-21, August.
    7. Pokharel, Ramesh & Bertolini, Luca & te Brömmelstroet, Marco & Acharya, Surya Raj, 2021. "Spatio-temporal evolution of cities and regional economic development in Nepal: Does transport infrastructure matter?," Journal of Transport Geography, Elsevier, vol. 90(C).
    8. Claudia Cosentino & Federico Amato & Beniamino Murgante, 2018. "Population-Based Simulation of Urban Growth: The Italian Case Study," Sustainability, MDPI, vol. 10(12), pages 1-21, December.
    9. Gang Lin & Dong Jiang & Jingying Fu & Chenglong Cao & Dongwei Zhang, 2020. "Spatial Conflict of Production–Living–Ecological Space and Sustainable-Development Scenario Simulation in Yangtze River Delta Agglomerations," Sustainability, MDPI, vol. 12(6), pages 1-11, March.
    10. Sukanta Malakar & Abhishek K. Rai & Arun K. Gupta, 2023. "Earthquake risk mapping in the Himalayas by integrated analytical hierarchy process, entropy with neural network," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 116(1), pages 951-975, March.
    11. Chandra Lal Pandey, 2021. "Managing urban water security: challenges and prospects in Nepal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(1), pages 241-257, January.
    12. Shu, Cheng & Xie, Hualin & Jiang, Jinfa & Chen, Qianru, 2018. "Is Urban Land Development Driven by Economic Development or Fiscal Revenue Stimuli in China?," Land Use Policy, Elsevier, vol. 77(C), pages 107-115.
    13. Issa Ouedraogo & Jürgen Runge & Joachim Eisenberg & Jennie Barron & Séraphine Sawadogo-Kaboré, 2014. "The Re-Greening of the Sahel: Natural Cyclicity or Human-Induced Change?," Land, MDPI, vol. 3(3), pages 1-16, September.
    14. Melania Michetti & Stefano Ghinoi, 2020. "Climate-driven vulnerability and risk perception: implications for climate change adaptation in rural Mexico," Journal of Environmental Studies and Sciences, Springer;Association of Environmental Studies and Sciences, vol. 10(3), pages 290-302, September.
    15. Adnan, Mohammed Sarfaraz Gani & Abdullah, Abu Yousuf Md & Dewan, Ashraf & Hall, Jim W., 2020. "The effects of changing land use and flood hazard on poverty in coastal Bangladesh," Land Use Policy, Elsevier, vol. 99(C).
    16. Can Kara & Naciye Doratlı, 2021. "Predict and Simulate Sustainable Urban Growth by Using GIS and MCE Based CA. Case of Famagusta in Northern Cyprus," Sustainability, MDPI, vol. 13(8), pages 1-27, April.
    17. Mohan Kumar Rai & Basanta Paudel & Yili Zhang & Pashupati Nepal & Narendra Raj Khanal & Linshan Liu & Raju Rai, 2023. "Appraisal of Empirical Studies on Land-Use and Land-Cover Changes and Their Impact on Ecosystem Services in Nepal Himalaya," Sustainability, MDPI, vol. 15(9), pages 1-19, April.
    18. Raaj Kishore Biswas & Enamul Kabir & Hafiz T. A. Khan, 2019. "Causes of Urban Migration in Bangladesh: Evidence from the Urban Health Survey," Population Research and Policy Review, Springer;Southern Demographic Association (SDA), vol. 38(4), pages 593-614, August.
    19. Paraskevas Nikolaou & Socrates Basbas, 2023. "Urban Development and Transportation: Investigating Spatial Performance Indicators of 12 European Union Coastal Regions," Land, MDPI, vol. 12(9), pages 1-21, September.
    20. Xue Zhou & Yang Zhou, 2021. "Spatio-Temporal Variation and Driving Forces of Land-Use Change from 1980 to 2020 in Loess Plateau of Northern Shaanxi, China," Land, MDPI, vol. 10(9), pages 1-17, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:6:y:2017:i:2:p:42-:d:101785. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.