IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i6p2175-d331359.html
   My bibliography  Save this article

Spatial Conflict of Production–Living–Ecological Space and Sustainable-Development Scenario Simulation in Yangtze River Delta Agglomerations

Author

Listed:
  • Gang Lin

    (College of Geoscience and Surveying Engineering, China University of Mining & Technology (Beijing), Ding No. 11 Xueyuan Road, Haidian District, Beijing 100083, China
    State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, China
    State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11A Datun Road, Chaoyang District, Beijing 100101, China)

  • Dong Jiang

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11A Datun Road, Chaoyang District, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Haidian District, Beijing 100049, China
    Key Laboratory of Carrying Capacity Assessment for Resource and Environment, Ministry of Land &Resources, No. 46 Fuchengmen Road, Xicheng District, Beijing 100812, China)

  • Jingying Fu

    (State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, No. 11A Datun Road, Chaoyang District, Beijing 100101, China
    College of Resources and Environment, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Haidian District, Beijing 100049, China)

  • Chenglong Cao

    (College of Geoscience and Surveying Engineering, China University of Mining & Technology (Beijing), Ding No. 11 Xueyuan Road, Haidian District, Beijing 100083, China)

  • Dongwei Zhang

    (College of Geoscience and Surveying Engineering, China University of Mining & Technology (Beijing), Ding No. 11 Xueyuan Road, Haidian District, Beijing 100083, China)

Abstract

Production–living–ecological space (PLES) is a recent research hotspot on land planning and regional sustainable development in China. Taking the Yangtze River Delta agglomerations as a case study, this paper establishes a spatial-conflict index to identify the PLES conflicts, and then builds a cellular-automaton (CA) Markov model to simulate the PLES pattern in 2030 and to evaluate the influence on PLES conflicts under two scenarios. Results showed that the ecological space (ES) and the living–productive space (LPS) of the Yangtze River Delta agglomerations showed a descending tendency in 2010–2015, whereas ecological–productive space (EPS) and productive–ecological space (PES) reflected a small increase. EPS and PES had squeezed ES and LPS with urbanization and industrial development in this region. Meanwhile, the spatial conflicts of PLES worsened during the period, with the average of the spatial-conflict index (SCI) shifting from 0.283 to 0.522, and seemed to gain momentum. On the basis of scenario analysis for 2030, it was concluded that the “ecological red line policy”, appropriate restriction of urban expansion, and ecological management of the bank of the Yangtze River are helpful in alleviating PLES conflicts, and contribute to spatial structure and harmonizing. The results of this study are expected to provide valuable implications for spatial planning and sustainable development in the Yangtze River delta agglomerations.

Suggested Citation

  • Gang Lin & Dong Jiang & Jingying Fu & Chenglong Cao & Dongwei Zhang, 2020. "Spatial Conflict of Production–Living–Ecological Space and Sustainable-Development Scenario Simulation in Yangtze River Delta Agglomerations," Sustainability, MDPI, vol. 12(6), pages 1-11, March.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2175-:d:331359
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/6/2175/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/6/2175/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhao, Liyuan & Peng, Zhong-Ren, 2012. "LandSys: an agent-based Cellular Automata model of land use change developed for transportation analysis," Journal of Transport Geography, Elsevier, vol. 25(C), pages 35-49.
    2. Kritsana Kityuttachai & Nitin Kumar Tripathi & Taravudh Tipdecho & Rajendra Shrestha, 2013. "CA-Markov Analysis of Constrained Coastal Urban Growth Modeling: Hua Hin Seaside City, Thailand," Sustainability, MDPI, vol. 5(4), pages 1-21, April.
    3. Tong Wang & Jan Kazak & Qi Han & Bauke de Vries, 2019. "A framework for path-dependent industrial land transition analysis using vector data," European Planning Studies, Taylor & Francis Journals, vol. 27(7), pages 1391-1412, July.
    4. Guitang Liao & Peng He & Xuesong Gao & Liangji Deng & Hui Zhang & Nana Feng & Wei Zhou & Ouping Deng, 2019. "The Production–Living–Ecological Land Classification System and Its Characteristics in the Hilly Area of Sichuan Province, Southwest China Based on Identification of the Main Functions," Sustainability, MDPI, vol. 11(6), pages 1-16, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shuang Lu & Zibo Zhou & Mingyang Houding & Liu Yang & Qiang Gao & Chenglong Cao & Xiang Li & Ziqiang Bu, 2023. "Study into the Evolution of Spatiotemporal Characteristics and Driving Mechanisms of Production–Living–Ecological Spaces on the Indochina Peninsula," Land, MDPI, vol. 12(9), pages 1-28, September.
    2. Minghui Yang & Yu Xie, 2021. "Spatial Pattern Change and Ecosystem Service Value Dynamics of Ecological and Non-Ecological Redline Areas in Nanjing, China," IJERPH, MDPI, vol. 18(8), pages 1-18, April.
    3. Jiaxing Cui & Xuesong Kong & Jing Chen & Jianwei Sun & Yuanyuan Zhu, 2021. "Spatially Explicit Evaluation and Driving Factor Identification of Land Use Conflict in Yangtze River Economic Belt," Land, MDPI, vol. 10(1), pages 1-24, January.
    4. Guoqiang Qiu & Yinghong Wang & Shanshan Guo & Qian Niu & Lin Qin & Di Zhu & Yunlong Gong, 2022. "Assessment and Spatial-Temporal Evolution Analysis of Land Use Conflict within Urban Spatial Zoning: Case of the Su-Xi-Chang Region," Sustainability, MDPI, vol. 14(4), pages 1-18, February.
    5. Gang Lin & Dong Jiang & Jingying Fu & Yi Zhao, 2022. "A Review on the Overall Optimization of Production–Living–Ecological Space: Theoretical Basis and Conceptual Framework," Land, MDPI, vol. 11(3), pages 1-15, February.
    6. Yang Zheng & Linlin Cheng & Yifang Wang, 2022. "Measuring the Spatial Conflict of Resource-Based Cities and Its Coupling Coordination Relationship with Land Use," Land, MDPI, vol. 11(9), pages 1-16, September.
    7. Hongji Chen & Qingyuan Yang & Kangchuan Su & Haozhe Zhang & Dan Lu & Hui Xiang & Lulu Zhou, 2021. "Identification and Optimization of Production-Living-Ecological Space in an Ecological Foundation Area in the Upper Reaches of the Yangtze River: A Case Study of Jiangjin District of Chongqing, China," Land, MDPI, vol. 10(8), pages 1-19, August.
    8. Yanhua Zhao & De Su & Yang Bao & Wei Yang & Yibo Sun, 2022. "A CLUMondo Model-Based Multi-Scenario Land-Use Change Simulation in the Yangtze River Delta Urban Agglomeration, China," Sustainability, MDPI, vol. 14(22), pages 1-15, November.
    9. Xiaofang Sun & Chao Yu & Junbang Wang & Meng Wang, 2020. "The Intensity Analysis of Production Living Ecological Land in Shandong Province, China," Sustainability, MDPI, vol. 12(20), pages 1-17, October.
    10. Tongyue Zhang & Mengyang Hou & Liqi Chu & Lili Wang, 2022. "Can the Establishment of National Key Ecological Function Areas Enhance Vegetation Carbon Sink? A Quasi-Natural Experiment Evidence from China," IJERPH, MDPI, vol. 19(19), pages 1-21, September.
    11. Bao Meng & Shaoyao Zhang & Wei Deng & Li Peng & Peng Zhou & Hao Zhang, 2023. "Identification and Analysis of Territorial Spatial Utilization Conflicts in Yibin Based on Multidimensional Perspective," Land, MDPI, vol. 12(5), pages 1-20, May.
    12. Jing Zhang & Yan Chen & Congmou Zhu & Bingbing Huang & Muye Gan, 2021. "Identification of Potential Land-Use Conflicts between Agricultural and Ecological Space in an Ecologically Fragile Area of Southeastern China," Land, MDPI, vol. 10(10), pages 1-18, September.
    13. Kai Li & Beiying Zhang & Weidong Xiao & Yong Lu, 2022. "Land Use Transformation Based on Production−Living−Ecological Space and Associated Eco-Environment Effects: A Case Study in the Yangtze River Delta Urban Agglomeration," Land, MDPI, vol. 11(7), pages 1-15, July.
    14. Yu Chen & Xuyang Su & Xuekai Wang, 2022. "Spatial Transformation Characteristics and Conflict Measurement of Production-Living-Ecology: Evidence from Urban Agglomeration of China," IJERPH, MDPI, vol. 19(3), pages 1-20, January.
    15. Xinxin Fu & Xiaofeng Wang & Jitao Zhou & Jiahao Ma, 2021. "Optimizing the Production-Living-Ecological Space for Reducing the Ecosystem Services Deficit," Land, MDPI, vol. 10(10), pages 1-17, September.
    16. Tian Liang & Peng Du & Fei Yang & Yuanxia Su & Yinchen Luo & You Wu & Chuanhao Wen, 2022. "Potential Land-Use Conflicts in the Urban Center of Chongqing Based on the “Production–Living–Ecological Space” Perspective," Land, MDPI, vol. 11(9), pages 1-18, August.
    17. Jianchun Fu & Shaoliang Zhang, 2021. "Functional Assessment and Coordination Characteristics of Production, Living, Ecological Function—A Case Study of Henan Province, China," IJERPH, MDPI, vol. 18(15), pages 1-15, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Furui Xi & Runping Wang & Jusong Shi & Jinde Zhang & Yang Yu & Na Wang & Zhiyi Wang, 2022. "Spatio-Temporal Pattern and Conflict Identification of Production–Living–Ecological Space in the Yellow River Basin," Land, MDPI, vol. 11(5), pages 1-22, May.
    2. Peng Zeng & Sihui Wu & Zongyao Sun & Yujia Zhu & Yuqi Chen & Zhi Qiao & Liangwa Cai, 2021. "Does Rural Production–Living–Ecological Spaces Have a Preference for Regional Endowments? A Case of Beijing-Tianjin-Hebei, China," Land, MDPI, vol. 10(11), pages 1-21, November.
    3. Xinyao Li & Lingzhi Wang & Bryan Pijanowski & Lingpeng Pan & Hichem Omrani & Anqi Liang & Yi Qu, 2022. "The Spatio-Temporal Pattern and Transition Mode of Recessive Cultivated Land Use Morphology in the Huaibei Region of the Jiangsu Province," Land, MDPI, vol. 11(11), pages 1-16, November.
    4. Shunqian Gao & Liu Yang & Hongzan Jiao, 2022. "Changes in and Patterns of the Tradeoffs and Synergies of Production-Living-Ecological Space: A Case Study of Longli County, Guizhou Province, China," Sustainability, MDPI, vol. 14(14), pages 1-18, July.
    5. Gang Lin & Dong Jiang & Jingying Fu & Yi Zhao, 2022. "A Review on the Overall Optimization of Production–Living–Ecological Space: Theoretical Basis and Conceptual Framework," Land, MDPI, vol. 11(3), pages 1-15, February.
    6. Aleksandra Besser & Jan K. Kazak & Małgorzata Świąder & Szymon Szewrański, 2019. "A Customized Decision Support System for Renewable Energy Application by Housing Association," Sustainability, MDPI, vol. 11(16), pages 1-16, August.
    7. Shu, Cheng & Xie, Hualin & Jiang, Jinfa & Chen, Qianru, 2018. "Is Urban Land Development Driven by Economic Development or Fiscal Revenue Stimuli in China?," Land Use Policy, Elsevier, vol. 77(C), pages 107-115.
    8. Can Kara & Naciye Doratlı, 2021. "Predict and Simulate Sustainable Urban Growth by Using GIS and MCE Based CA. Case of Famagusta in Northern Cyprus," Sustainability, MDPI, vol. 13(8), pages 1-27, April.
    9. Paraskevas Nikolaou & Socrates Basbas, 2023. "Urban Development and Transportation: Investigating Spatial Performance Indicators of 12 European Union Coastal Regions," Land, MDPI, vol. 12(9), pages 1-21, September.
    10. Yu Chen & Shuangshuang Liu & Wenbo Ma & Qian Zhou, 2023. "Assessment of the Carrying Capacity and Suitability of Spatial Resources and the Environment and Diagnosis of Obstacle Factors in the Yellow River Basin," IJERPH, MDPI, vol. 20(4), pages 1-26, February.
    11. Chudech Losiri & Masahiko Nagai & Sarawut Ninsawat & Rajendra P. Shrestha, 2016. "Modeling Urban Expansion in Bangkok Metropolitan Region Using Demographic–Economic Data through Cellular Automata-Markov Chain and Multi-Layer Perceptron-Markov Chain Models," Sustainability, MDPI, vol. 8(7), pages 1-23, July.
    12. Yu Chen & Xuyang Su & Xuekai Wang, 2022. "Spatial Transformation Characteristics and Conflict Measurement of Production-Living-Ecology: Evidence from Urban Agglomeration of China," IJERPH, MDPI, vol. 19(3), pages 1-20, January.
    13. Sijia He & Xiaoyun Wang & Jingru Dong & Baocheng Wei & Hanming Duan & Jizong Jiao & Yaowen Xie, 2019. "Three-Dimensional Urban Expansion Analysis of Valley-Type Cities: A Case Study of Chengguan District, Lanzhou, China," Sustainability, MDPI, vol. 11(20), pages 1-18, October.
    14. Meijing Chen & Zhongke Bai & Qingri Wang & Zeyu Shi, 2021. "Habitat Quality Effect and Driving Mechanism of Land Use Transitions: A Case Study of Henan Water Source Area of the Middle Route of the South-to-North Water Transfer Project," Land, MDPI, vol. 10(8), pages 1-20, July.
    15. Nij Tontisirin & Sutee Anantsuksomsri, 2021. "Economic Development Policies and Land Use Changes in Thailand: From the Eastern Seaboard to the Eastern Economic Corridor," Sustainability, MDPI, vol. 13(11), pages 1-20, May.
    16. Kai Zhu & Yufeng Cheng & Weiye Zang & Quan Zhou & Youssef El Archi & Hossein Mousazadeh & Moaaz Kabil & Katalin Csobán & Lóránt Dénes Dávid, 2023. "Multiscenario Simulation of Land-Use Change in Hubei Province, China Based on the Markov-FLUS Model," Land, MDPI, vol. 12(4), pages 1-27, March.
    17. Jie Song & Xinyu Fu & Ruoniu Wang & Zhong-Ren Peng & Zongni Gu, 2018. "Does planned retreat matter? Investigating land use change under the impacts of flooding induced by sea level rise," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 23(5), pages 703-733, June.
    18. Wang, Han & Lu, Siying & Lu, Bo & Nie, Xin, 2021. "Overt and covert: The relationship between the transfer of land development rights and carbon emissions," Land Use Policy, Elsevier, vol. 108(C).
    19. Lizhong Hua & Lina Tang & Shenghui Cui & Kai Yin, 2014. "Simulating Urban Growth Using the SLEUTH Model in a Coastal Peri-Urban District in China," Sustainability, MDPI, vol. 6(6), pages 1-16, June.
    20. Kangwen Zhu & Jun He & Lanxin Zhang & Dan Song & Longjiang Wu & Yaqun Liu & Sheng Zhang, 2022. "Impact of Future Development Scenario Selection on Landscape Ecological Risk in the Chengdu-Chongqing Economic Zone," Land, MDPI, vol. 11(7), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:6:p:2175-:d:331359. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.