IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v6y2017i1p20-d92890.html
   My bibliography  Save this article

Understanding Land Use and Land Cover Dynamics from 1976 to 2014 in Yellow River Delta

Author

Listed:
  • Baolei Zhang

    (School of Geography and Environment, Shandong Normal University, 88 East Wenhua Rd, Jinan 250014, China)

  • Qiaoyun Zhang

    (School of Geography and Environment, Shandong Normal University, 88 East Wenhua Rd, Jinan 250014, China)

  • Chaoyang Feng

    (Chinese Research Academy of Environmental Sciences, Beijing 100012, China)

  • Qingyu Feng

    (Agricultural and Biological Engineering, Purdue University, 225 S. University St, West Lafayette, IN 47907-2093, USA)

  • Shumin Zhang

    (Institute of Regional Economic Research, Shandong University of Finance and Economics, 7366 East Erhuan Rd, Jinan 250014, China)

Abstract

Long-term intensive land use/cover changes (LUCCs) of the Yellow River Delta (YRD) have been happening since the 1960s. The land use patterns of the LUCCs are crucial for bio-diversity conservation and/or sustainable development. This study quantified patterns of the LUCCs, explored the systematic transitions, and identified wetland change trajectory for the period 1976–2014 in the YRD. Landsat imageries of 1976, 1984, 1995, 2006, and 2014 were used to derive nine land use classes. Post classification change detection analysis based on enhanced transition matrix was applied to identify land use dynamics and trajectory of wetland change. The five cartographic outputs for changes in land use underlined major decreases in natural wetland areas and increases in artificial wetland and non-wetland, especially aquafarms, salt pans and construction lands. The systematic transitions in the YRD were wetland degradation, wetland artificialization, and urbanization. Wetland change trajectory results demonstrated that the main wetland changes were wetland degradation and wetland artificialization. Coastline change is the subordinate reason for natural wetland degradation in comparison with human activities. The results of this study allowed for an improvement in the understanding of the LUCC processes and enabled researchers and planners to focus on the most important signals of systematic landscape transitions while also allowing for a better understanding of the proximate causes of changes.

Suggested Citation

  • Baolei Zhang & Qiaoyun Zhang & Chaoyang Feng & Qingyu Feng & Shumin Zhang, 2017. "Understanding Land Use and Land Cover Dynamics from 1976 to 2014 in Yellow River Delta," Land, MDPI, vol. 6(1), pages 1-20, March.
  • Handle: RePEc:gam:jlands:v:6:y:2017:i:1:p:20-:d:92890
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/6/1/20/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/6/1/20/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Wenjie Wang & Chuanrong Zhang & Jenica M. Allen & Weidong Li & Mark A. Boyer & Kathleen Segerson & John A. Silander, 2016. "Analysis and Prediction of Land Use Changes Related to Invasive Species and Major Driving Forces in the State of Connecticut," Land, MDPI, vol. 5(3), pages 1-22, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jinquan Ai & Chao Zhang & Lijuan Chen & Dajun Li, 2020. "Mapping Annual Land Use and Land Cover Changes in the Yangtze Estuary Region Using an Object-Based Classification Framework and Landsat Time Series Data," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    2. Zhiting Chen & Qing Ren & Tian Zhang & Zhewen Kang & Xiaoyan Huang & Peng Li & Xiaohu Dang & Xiaoshu Cao & Mingjiang Deng, 2022. "Spatiotemporal Dynamics of the Human Critical Area (HCA) in the “Three Water Lines” Region of Northwest China and the Impact of Socioeconomic Factors between 2000 and 2020," Sustainability, MDPI, vol. 14(9), pages 1-20, May.
    3. Yu Zhang & Juanle Wang & Yi Wang & Altansukh Ochir & Chuluun Togtokh, 2022. "Land Cover Change Analysis to Assess Sustainability of Development in the Mongolian Plateau over 30 Years," Sustainability, MDPI, vol. 14(10), pages 1-20, May.
    4. Henry Schubert & Andrés Caballero Calvo & Markus Rauchecker & Oscar Rojas-Zamora & Grischa Brokamp & Brigitta Schütt, 2018. "Assessment of Land Cover Changes in the Hinterland of Barranquilla (Colombia) Using Landsat Imagery and Logistic Regression," Land, MDPI, vol. 7(4), pages 1-24, December.
    5. Shisi Tang & Laixi Song & Shiqi Wan & Yafei Wang & Yazhen Jiang & Jinfeng Liao, 2022. "Long-Time-Series Evolution and Ecological Effects of Coastline Length in Coastal Zone: A Case Study of the Circum-Bohai Coastal Zone, China," Land, MDPI, vol. 11(8), pages 1-19, August.
    6. Monika Kopecká & Harini Nagendra & Andrew Millington, 2018. "Urban Land Systems: An Ecosystems Perspective," Land, MDPI, vol. 7(1), pages 1-4, January.
    7. Jean-François Mas & Rodrigo Nogueira de Vasconcelos & Washington Franca-Rocha, 2019. "Analysis of High Temporal Resolution Land Use/Land Cover Trajectories," Land, MDPI, vol. 8(2), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Megersa Kebede Leta & Tamene Adugna Demissie & Jens Tränckner, 2021. "Modeling and Prediction of Land Use Land Cover Change Dynamics Based on Land Change Modeler (LCM) in Nashe Watershed, Upper Blue Nile Basin, Ethiopia," Sustainability, MDPI, vol. 13(7), pages 1-24, March.
    2. Amah Akodéwou & Johan Oszwald & Slim Saïdi & Laurent Gazull & Sêmihinva Akpavi & Koffi Akpagana & Valéry Gond, 2020. "Land Use and Land Cover Dynamics Analysis of the Togodo Protected Area and Its Surroundings in Southeastern Togo, West Africa," Sustainability, MDPI, vol. 12(13), pages 1-23, July.
    3. Markos Mathewos & Semaria Moga Lencha & Misgena Tsegaye, 2022. "Land Use and Land Cover Change Assessment and Future Predictions in the Matenchose Watershed, Rift Valley Basin, Using CA-Markov Simulation," Land, MDPI, vol. 11(10), pages 1-28, September.
    4. Ruiting Zhai & Chuanrong Zhang & Weidong Li & Mark A. Boyer & Dean Hanink, 2016. "Prediction of Land Use Change in Long Island Sound Watersheds Using Nighttime Light Data," Land, MDPI, vol. 5(4), pages 1-16, December.
    5. Behnoosh Abbasnezhad & Jesse B. Abrams & Jeffrey Hepinstall-Cymerman, 2023. "Incorporating Social and Policy Drivers into Land-Use and Land-Cover Projection," Sustainability, MDPI, vol. 15(19), pages 1-18, September.
    6. Motuma Shiferaw Regasa & Michael Nones, 2022. "Past and Future Land Use/Land Cover Changes in the Ethiopian Fincha Sub-Basin," Land, MDPI, vol. 11(8), pages 1-20, August.
    7. Ruci Wang & Hao Hou & Yuji Murayama, 2018. "Scenario-Based Simulation of Tianjin City Using a Cellular Automata–Markov Model," Sustainability, MDPI, vol. 10(8), pages 1-20, July.
    8. Jian Gong & Jingye Li & Jianxin Yang & Shicheng Li & Wenwu Tang, 2017. "Land Use and Land Cover Change in the Qinghai Lake Region of the Tibetan Plateau and Its Impact on Ecosystem Services," IJERPH, MDPI, vol. 14(7), pages 1-21, July.
    9. Peter Chrastina & Pavel Hronček & Bohuslava Gregorová & Michaela Žoncová, 2020. "Land-Use Changes of Historical Rural Landscape—Heritage, Protection, and Sustainable Ecotourism: Case Study of Slovak Exclave Čív (Piliscsév) in Komárom-Esztergom County (Hungary)," Sustainability, MDPI, vol. 12(15), pages 1-25, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:6:y:2017:i:1:p:20-:d:92890. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.