IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v13y2024i1p78-d1316258.html
   My bibliography  Save this article

Mapping Soil Organic Carbon Stock and Uncertainties in an Alpine Valley (Northern Italy) Using Machine Learning Models

Author

Listed:
  • Sara Agaba

    (Department of Earth and Environmental Sciences (DISAT), University of Milan Bicocca, 20126 Milan, Italy)

  • Chiara Ferré

    (Department of Earth and Environmental Sciences (DISAT), University of Milan Bicocca, 20126 Milan, Italy)

  • Marco Musetti

    (Department of Earth and Environmental Sciences (DISAT), University of Milan Bicocca, 20126 Milan, Italy)

  • Roberto Comolli

    (Department of Earth and Environmental Sciences (DISAT), University of Milan Bicocca, 20126 Milan, Italy)

Abstract

In this study, we conducted a comprehensive analysis of the spatial distribution of soil organic carbon stock (SOC stock) and the associated uncertainties in two soil layers (0–10 cm and 0–30 cm; SOC stock 10 and SOC stock 30, respectively), in Valchiavenna, an alpine valley located in northern Italy (450 km 2 ). We employed the digital soil mapping (DSM) approach within different machine learning models, including multivariate adaptive regression splines (MARS), random forest (RF), support vector regression (SVR), and elastic net (ENET). Our dataset comprised soil data from 110 profiles, with SOC stock calculations for all sampling points based on bulk density (BD), whether measured or estimated, considering the presence of rock fragments. As environmental covariates for our research, we utilized environmental variables, in particular, geomorphometric parameters derived from a digital elevation model (with a 20 m pixel resolution), land cover data, and climatic maps. To evaluate the effectiveness of our models, we evaluated their capacity to predict SOC stock 10 and SOC stock 30 using the coefficient of determination (R 2 ). The results for the SOC stock 10 were as follows: MARS 0.39, ENET 0.41, RF 0.69, and SVR 0.50. For the SOC stock 30, the corresponding R 2 values were: MARS 0.45, ENET 0.48, RF 0.65, and SVR 0.62. Additionally, we calculated the root-mean-squared error (RMSE), mean absolute error (MAE), the bias, and Lin’s concordance correlation coefficient (LCCC) for further assessment. To map the spatial distribution of SOC stock and address uncertainties in both soil layers, we chose the RF model, due to its better performance, as indicated by the highest R 2 and the lowest RMSE and MAE. The resulting SOC stock maps using the RF model demonstrated an accuracy of RMSE = 1.35 kg m −2 for the SOC stock 10 and RMSE = 3.36 kg m −2 for the SOC stock 30. To further evaluate and illustrate the precision of our soil maps, we conducted an uncertainty assessment and mapping by analyzing the standard deviation (SD) from 50 iterations of the best-performing RF model. This analysis effectively highlighted the high accuracy achieved in our soil maps. The maps of uncertainty demonstrated that the RF model better predicts the SOC stock 10 compared to the SOC stock 30. Predicting the correct ranges of SOC stocks was identified as the main limitation of the methodology.

Suggested Citation

  • Sara Agaba & Chiara Ferré & Marco Musetti & Roberto Comolli, 2024. "Mapping Soil Organic Carbon Stock and Uncertainties in an Alpine Valley (Northern Italy) Using Machine Learning Models," Land, MDPI, vol. 13(1), pages 1-16, January.
  • Handle: RePEc:gam:jlands:v:13:y:2024:i:1:p:78-:d:1316258
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/13/1/78/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/13/1/78/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    2. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    3. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    4. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    5. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    6. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    7. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    8. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    9. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    10. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    11. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    12. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    13. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.
    14. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    15. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    16. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    17. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    18. Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.
    19. Jung, Yoon Mo & Whang, Joyce Jiyoung & Yun, Sangwoon, 2020. "Sparse probabilistic K-means," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    20. Changrong Yan & Dixin Zhang, 2013. "Sparse dimension reduction for survival data," Computational Statistics, Springer, vol. 28(4), pages 1835-1852, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:13:y:2024:i:1:p:78-:d:1316258. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.