IDEAS home Printed from https://ideas.repec.org/a/gam/jlands/v11y2022i7p1017-d855507.html
   My bibliography  Save this article

History of Land Cover Change on Santa Cruz Island, Galapagos

Author

Listed:
  • Ilia Alomía Herrera

    (Georges Lemaitre Centre for Earth and Climate Research, Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium
    Escuela de Ingeniería Ambiental, Facultad de Ingeniería en Geología, Minas, Petróleos y Ambiental, Universidad Central del Ecuador, Quito 170521, Ecuador)

  • Rose Paque

    (Georges Lemaitre Centre for Earth and Climate Research, Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium)

  • Michiel Maertens

    (Georges Lemaitre Centre for Earth and Climate Research, Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium)

  • Veerle Vanacker

    (Georges Lemaitre Centre for Earth and Climate Research, Earth and Life Institute, Université catholique de Louvain, 1348 Louvain-la-Neuve, Belgium)

Abstract

Islands are particularly vulnerable to the effects of land cover change due to their limited size and remoteness. This study analyzes vegetation cover change in the agricultural area of Santa Cruz (Galapagos Archipelago) between 1961 and 2018. To reconstruct multitemporal land cover change from existing land cover products, a multisource data integration procedure was followed to reduce imprecision and inconsistencies that may result from the comparison of heterogeneous datasets. The conversion of native forests and grasslands into agricultural land was the principal land cover change in the non-protected area. In 1961, about 94% of the non-protected area was still covered by native vegetation, whereas this had decreased to only 7% in 2018. Most of the agricultural expansion took place in the 1960s and 1970s, and it created an anthropogenic landscape where 67% of the area is covered by agricultural land and 26% by invasive species. Early clearance of native vegetation took place in the more accessible—less rugged—areas with deeper-than-average and well-drained soils. The first wave of settlement consisted of large and isolated farmsteads, with 19% of the farms being larger than 100 ha and specializing in diary and meat production. Over the period of 1961–1987, the number of farms doubled from less than 100 to more than 200, while the average farm size decreased from 90 to 60 ha/farmstead. Due to labor constraints in the agricultural sector, these farms opted for less labor-intensive activities such as livestock farming. New farms (popping up in the 1990s and 2000s) are generally small in size, with <5 ha per farmstead, and settled in areas with less favorable biophysical conditions and lower accessibility to markets. From the 1990s onwards, the surge of alternative income opportunities in the tourism and travel-related sector reduced pressure on the natural resources in the non-protected area.

Suggested Citation

  • Ilia Alomía Herrera & Rose Paque & Michiel Maertens & Veerle Vanacker, 2022. "History of Land Cover Change on Santa Cruz Island, Galapagos," Land, MDPI, vol. 11(7), pages 1-24, July.
  • Handle: RePEc:gam:jlands:v:11:y:2022:i:7:p:1017-:d:855507
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2073-445X/11/7/1017/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2073-445X/11/7/1017/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Taylor, J. Edward & Hardner, Jared & Stewart, Micki, 2009. "Ecotourism and economic growth in the Galapagos: an island economy-wide analysis," Environment and Development Economics, Cambridge University Press, vol. 14(2), pages 139-162, April.
    2. Tamara S. Wilson & Benjamin M. Sleeter & Rachel R. Sleeter & Christopher E. Soulard, 2014. "Land-Use Threats and Protected Areas: A Scenario-Based, Landscape Level Approach," Land, MDPI, vol. 3(2), pages 1-28, April.
    3. Andrés Pazmiño & Silvia Serrao-Neumann & Darryl Low Choy, 2018. "Towards Comprehensive Policy Integration for the Sustainability of Small Islands: A Landscape-Scale Planning Approach for the Galápagos Islands," Sustainability, MDPI, vol. 10(4), pages 1-29, April.
    4. Shannon M. Sterling & Agnès Ducharne & Jan Polcher, 2013. "The impact of global land-cover change on the terrestrial water cycle," Nature Climate Change, Nature, vol. 3(4), pages 385-390, April.
    5. Rebecca Jo Stormes Newman & Claudia Capitani & Colin Courtney-Mustaphi & Jessica Paula Rose Thorn & Rebecca Kariuki & Charis Enns & Robert Marchant, 2020. "Integrating Insights from Social-Ecological Interactions into Sustainable Land Use Change Scenarios for Small Islands in the Western Indian Ocean," Sustainability, MDPI, vol. 12(4), pages 1-22, February.
    6. Lowder, Sarah K. & Skoet, Jakob & Raney, Terri, 2016. "The Number, Size, and Distribution of Farms, Smallholder Farms, and Family Farms Worldwide," World Development, Elsevier, vol. 87(C), pages 16-29.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patil, Vikram & Ghosh, Ranjan & Kathuria, Vinish & Farrell, Katharine N., 2020. "Money, Land or self-employment? Understanding preference heterogeneity in landowners’ choices for compensation under land acquisition in India," Land Use Policy, Elsevier, vol. 97(C).
    2. Luis Bauluz & Yajna Govind & Filip Novokmet, 2020. "Global Land Inequality," PSE Working Papers halshs-03022318, HAL.
    3. Islam, Md. Mofakkarul & Sarker, Md. Asaduzzaman & Al Mamun, Md. Abdullah & Mamun-ur-Rashid, Md. & Roy, Debashis, 2021. "Stepping Up versus Stepping Out: On the outcomes and drivers of two alternative climate change adaptation strategies of smallholders," World Development, Elsevier, vol. 148(C).
    4. Livia Marchetti & Valentina Cattivelli & Claudia Cocozza & Fabio Salbitano & Marco Marchetti, 2020. "Beyond Sustainability in Food Systems: Perspectives from Agroecology and Social Innovation," Sustainability, MDPI, vol. 12(18), pages 1-24, September.
    5. Anne Jerneck, 2018. "What about Gender in Climate Change? Twelve Feminist Lessons from Development," Sustainability, MDPI, vol. 10(3), pages 1-20, February.
    6. SIngh Verma, Juhee & Sharma, Pritee, 2019. "Potential of Organic Farming to Mitigate Climate Change and Increase Small Farmers’ Welfare," MPRA Paper 99994, University Library of Munich, Germany.
    7. Hurley, Mason, 2016. "Re-examining Changes in Farm Size Distributions Worldwide Using a Modified Generalized Method of Moments Approach," Master's Theses and Plan B Papers 249287, University of Minnesota, Department of Applied Economics.
    8. Yuta J. Masuda & Jonathan R.B. Fisher & Wei Zhang & Carolina Castilla & Timothy M. Boucher & Genowefa Blundo‐Canto, 2020. "A respondent‐driven method for mapping small agricultural plots using tablets and high resolution imagery," Journal of International Development, John Wiley & Sons, Ltd., vol. 32(5), pages 727-748, July.
    9. Koolwal, Gayatri B., 2021. "Improving the measurement of rural women's employment: Global momentum and survey priorities," World Development, Elsevier, vol. 147(C).
    10. Yuewen Huo & Songlin Ye & Zhou Wu & Fusuo Zhang & Guohua Mi, 2022. "Barriers to the Development of Agricultural Mechanization in the North and Northeast China Plains: A Farmer Survey," Agriculture, MDPI, vol. 12(2), pages 1-14, February.
    11. Zhenhua Wu & Qingqing Lu & Shaogang Lei & Qingwu Yan, 2021. "Study on Landscape Ecological Classification and Landscape Types Evolution: A Case Study of a Mining City in Semi-Arid Steppe," Sustainability, MDPI, vol. 13(17), pages 1-20, August.
    12. Changchang Liu & Chuxiong Deng & Zhongwu Li & Yaojun Liu & Shuyuan Wang, 2022. "Optimization of Spatial Pattern of Land Use: Progress, Frontiers, and Prospects," IJERPH, MDPI, vol. 19(10), pages 1-22, May.
    13. Dang, Hai-Anh & Carletto, Calogero, 2022. "Recall Bias Revisited: Measure Farm Labor Using Mixed-Mode Surveys and Multiple Imputation," IZA Discussion Papers 14997, Institute of Labor Economics (IZA).
    14. Dimas de Barros Santiago & Humberto Alves Barbosa & Washington Luiz Félix Correia Filho & José Francisco de Oliveira-Júnior & Franklin Paredes-Trejo & Catarina de Oliveira Buriti, 2022. "Variability of Water Use Efficiency Associated with Climate Change in the Extreme West of Bahia," Sustainability, MDPI, vol. 14(23), pages 1-13, November.
    15. Zhiqi Zheng & Hongbo Zhao & Zhengdao Liu & Jin He & Wenzheng Liu, 2021. "Research Progress and Development of Mechanized Potato Planters: A Review," Agriculture, MDPI, vol. 11(6), pages 1-27, June.
    16. Qinghe Zhao & Shengyan Ding & Xiaoyu Ji & Zhendong Hong & Mengwen Lu & Peng Wang, 2021. "Relative Contribution of the Xiaolangdi Dam to Runoff Changes in the Lower Yellow River," Land, MDPI, vol. 10(5), pages 1-21, May.
    17. Matthew D. Senyshen & Dongmei Chen, 2023. "The Impact of Land Cover Change on Surface Water Temperature of Small Lakes in Eastern Ontario from 1985 to 2020," Land, MDPI, vol. 12(3), pages 1-18, February.
    18. Chang, Hung-Hao & Mishra, Ashok K. & Lee, Tzong-Haw, 2019. "A supply-side analysis of agritourism: Evidence from farm-level agriculture census data in Taiwan," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(3), July.
    19. Peipei Yang & Wenxu Dong & Marius Heinen & Wei Qin & Oene Oenema, 2022. "Soil Compaction Prevention, Amelioration and Alleviation Measures Are Effective in Mechanized and Smallholder Agriculture: A Meta-Analysis," Land, MDPI, vol. 11(5), pages 1-18, April.
    20. Regan, Courtney M. & Connor, Jeffery D. & Summers, David M. & Settre, Claire & O’Connor, Patrick J. & Cavagnaro, Timothy R., 2020. "The influence of crediting and permanence periods on Australian forest-based carbon offset supply," Land Use Policy, Elsevier, vol. 97(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jlands:v:11:y:2022:i:7:p:1017-:d:855507. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.