IDEAS home Printed from https://ideas.repec.org/a/gam/jjopen/v4y2021i4p42-588d647882.html
   My bibliography  Save this article

Computational Prediction of New Series of Topological Ternary Compounds La X S ( X = Si, Ge, Sn) from First-Principles

Author

Listed:
  • Jack Howard

    (Department of Physics, Seton Hall University, South Orange, NJ 07079, USA)

  • Joshua Steier

    (Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11790, USA)

  • Neel Haldolaarachchige

    (Department of Physical Science, Bergen Community College, Paramus, NJ 07652, USA)

  • Kalani Hettiarachchilage

    (Department of Physics, Seton Hall University, South Orange, NJ 07079, USA)

Abstract

Dirac materials and their advanced physical properties are one of the most active fields of topological matter. In this paper, we present an ab initio study of electronics properties of newly designed La X S ( X = Si, Ge, Sn) tetragonal structured ternaries, with the absence and presence of spin–orbit coupling. We design the La X S tetragonal non-symophic p4/nmm space group (no. 129) structures and identify their optimization lattice parameters. The electronic band structures display several Dirac crossings with the coexistence of both type I and type II Dirac points identified by considering the effect of spin–orbit coupling toward the linear crossing. Additionally, we perform the formation energy calculation through the density functional theory (DFT) to predict the stability of the structures and the elastic constants calculations to verify the Born mechanical stability criteria of the compounds.

Suggested Citation

  • Jack Howard & Joshua Steier & Neel Haldolaarachchige & Kalani Hettiarachchilage, 2021. "Computational Prediction of New Series of Topological Ternary Compounds La X S ( X = Si, Ge, Sn) from First-Principles," J, MDPI, vol. 4(4), pages 1-12, September.
  • Handle: RePEc:gam:jjopen:v:4:y:2021:i:4:p:42-588:d:647882
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2571-8800/4/4/42/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2571-8800/4/4/42/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuanbo Zhang & Yan-Wen Tan & Horst L. Stormer & Philip Kim, 2005. "Experimental observation of the quantum Hall effect and Berry's phase in graphene," Nature, Nature, vol. 438(7065), pages 201-204, November.
    2. Mingzhe Yan & Huaqing Huang & Kenan Zhang & Eryin Wang & Wei Yao & Ke Deng & Guoliang Wan & Hongyun Zhang & Masashi Arita & Haitao Yang & Zhe Sun & Hong Yao & Yang Wu & Shoushan Fan & Wenhui Duan & Sh, 2017. "Lorentz-violating type-II Dirac fermions in transition metal dichalcogenide PtTe2," Nature Communications, Nature, vol. 8(1), pages 1-6, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei Wang & Yang Zhang & Zhijie Wang & Haoxiong Zhang & Xi Wu & Changhua Bao & Jia Li & Pu Yu & Shuyun Zhou, 2023. "Ionic liquid gating induced self-intercalation of transition metal chalcogenides," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Anh-Luan Phan & Dai-Nam Le, 2021. "Electronic transport in two-dimensional strained Dirac materials under multi-step Fermi velocity barrier: transfer matrix method for supersymmetric systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(8), pages 1-16, August.
    3. Yoonseok Hwang & Jun-Won Rhim & Bohm-Jung Yang, 2021. "Geometric characterization of anomalous Landau levels of isolated flat bands," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Zhongqiang Chen & Hongsong Qiu & Xinjuan Cheng & Jizhe Cui & Zuanming Jin & Da Tian & Xu Zhang & Kankan Xu & Ruxin Liu & Wei Niu & Liqi Zhou & Tianyu Qiu & Yequan Chen & Caihong Zhang & Xiaoxiang Xi &, 2024. "Defect-induced helicity dependent terahertz emission in Dirac semimetal PtTe2 thin films," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    5. Daiyu Geng & Hui Zhou & Shaosheng Yue & Zhenyu Sun & Peng Cheng & Lan Chen & Sheng Meng & Kehui Wu & Baojie Feng, 2022. "Observation of gapped Dirac cones in a two-dimensional Su-Schrieffer-Heeger lattice," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    6. M. T. Greenaway & P. Kumaravadivel & J. Wengraf & L. A. Ponomarenko & A. I. Berdyugin & J. Li & J. H. Edgar & R. Krishna Kumar & A. K. Geim & L. Eaves, 2021. "Graphene’s non-equilibrium fermions reveal Doppler-shifted magnetophonon resonances accompanied by Mach supersonic and Landau velocity effects," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    7. Zheyu Cheng & Yi-Jun Guan & Haoran Xue & Yong Ge & Ding Jia & Yang Long & Shou-Qi Yuan & Hong-Xiang Sun & Yidong Chong & Baile Zhang, 2024. "Three-dimensional flat Landau levels in an inhomogeneous acoustic crystal," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Jing-Wen Hsueh & Lai-Hsiang Kuo & Po-Han Chen & Wan-Hsin Chen & Chi-Yao Chuang & Chia-Nung Kuo & Chin-Shan Lue & Yu-Ling Lai & Bo-Hong Liu & Chia-Hsin Wang & Yao-Jane Hsu & Chun-Liang Lin & Jyh-Pin Ch, 2024. "Investigating the role of undercoordinated Pt sites at the surface of layered PtTe2 for methanol decomposition," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    9. Timon Rabczuk & Mohammad Reza Azadi Kakavand & Raahul Palanivel Uma & Ali Hossein Nezhad Shirazi & Meysam Makaremi, 2018. "Thermal Conductance along Hexagonal Boron Nitride and Graphene Grain Boundaries," Energies, MDPI, vol. 11(6), pages 1-14, June.
    10. Talia Tene & Nataly Bonilla García & Miguel Ángel Sáez Paguay & John Vera & Marco Guevara & Cristian Vacacela Gomez & Stefano Bellucci, 2024. "Dataset for Electronics and Plasmonics in Graphene, Silicene, and Germanene Nanostrips," Data, MDPI, vol. 9(2), pages 1-18, January.
    11. Talal Yusaf & Abu Shadate Faisal Mahamude & Kaniz Farhana & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Mohd Kamal Kamarulzaman & Sivarao Subramonian & Steve Hall & Hayder Abed Dh, 2022. "A Comprehensive Review on Graphene Nanoparticles: Preparation, Properties, and Applications," Sustainability, MDPI, vol. 14(19), pages 1-32, September.
    12. Lijun Zhu & Xiaoqiang Liu & Lin Li & Xinyi Wan & Ran Tao & Zhongniu Xie & Ji Feng & Changgan Zeng, 2023. "Signature of quantum interference effect in inter-layer Coulomb drag in graphene-based electronic double-layer systems," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    13. Jack Howard & Alexander Rodriguez & Neel Haldolaarachchige & Kalani Hettiarachchilage, 2023. "First Principles Computation of New Topological B 2 X 2 Zn ( X = Ir, Rh, Co) Compounds," J, MDPI, vol. 6(1), pages 1-12, February.
    14. Vladimir S. Prudkovskiy & Yiran Hu & Kaimin Zhang & Yue Hu & Peixuan Ji & Grant Nunn & Jian Zhao & Chenqian Shi & Antonio Tejeda & David Wander & Alessandro Cecco & Clemens B. Winkelmann & Yuxuan Jian, 2022. "An epitaxial graphene platform for zero-energy edge state nanoelectronics," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    15. Mussad M. Alzahrani & Anurag Roy & Senthilarasu Sundaram & Tapas K. Mallick, 2021. "Investigation of Thermal Stress Arising in a Graphene Neutral Density Filter for Concentrated Photovoltaic System," Energies, MDPI, vol. 14(12), pages 1-9, June.
    16. Byungmin Sohn & Jeong Rae Kim & Choong H. Kim & Sangmin Lee & Sungsoo Hahn & Younsik Kim & Soonsang Huh & Donghan Kim & Youngdo Kim & Wonshik Kyung & Minsoo Kim & Miyoung Kim & Tae Won Noh & Changyoun, 2021. "Observation of metallic electronic structure in a single-atomic-layer oxide," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    17. Nauman Javed, Rana Muhammad & Al-Othman, Amani & Tawalbeh, Muhammad & Olabi, Abdul Ghani, 2022. "Recent developments in graphene and graphene oxide materials for polymer electrolyte membrane fuel cells applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    18. Qiangsheng Lu & Jacob Cook & Xiaoqian Zhang & Kyle Y. Chen & Matthew Snyder & Duy Tung Nguyen & P. V. Sreenivasa Reddy & Bingchao Qin & Shaoping Zhan & Li-Dong Zhao & Pawel J. Kowalczyk & Simon A. Bro, 2022. "Realization of unpinned two-dimensional dirac states in antimony atomic layers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jjopen:v:4:y:2021:i:4:p:42-588:d:647882. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.