IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i6p1553-d152413.html
   My bibliography  Save this article

Thermal Conductance along Hexagonal Boron Nitride and Graphene Grain Boundaries

Author

Listed:
  • Timon Rabczuk

    (Division of Computational Mechanics, Ton Duc Thang University, Ho Chi Minh City, Vietnam
    Faculty of Civil Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam
    These authors contributed equally to this work.)

  • Mohammad Reza Azadi Kakavand

    (Unit of Strength of Materials and Structural Analysis, Institute of Basic Sciences in Engineering Sciences, University of Innsbruck, 6020 Innsbruck, Austria
    These authors contributed equally to this work.)

  • Raahul Palanivel Uma

    (Institute of Mechanics, University of Duisburg-Essen, 45141 Essen, Germany)

  • Ali Hossein Nezhad Shirazi

    (Institute of Structural Mechanics, Bauhaus-University of Weimar, 99423 Weimar, Germany)

  • Meysam Makaremi

    (Faculty of Applied Science & Engineering, University of Toronto, Toronto, ON M5S 3E4, Canada)

Abstract

We carried out molecular dynamics simulations at various temperatures to predict the thermal conductivity and the thermal conductance of graphene and hexagonal boron-nitride (h-BN) thin films. Therefore, several models with six different grain boundary configurations ranging from 33–140 nm in length were generated. We compared our predicted thermal conductivity of pristine graphene and h-BN with previously conducted experimental data and obtained good agreement. Finally, we computed the thermal conductance of graphene and h-BN sheets for six different grain boundary configurations, five sheet lengths ranging from 33 to 140 nm and three temperatures (i.e., 300 K, 500 K and 700 K). The results show that the thermal conductance remains nearly constant with varying length and temperature for each grain boundary.

Suggested Citation

  • Timon Rabczuk & Mohammad Reza Azadi Kakavand & Raahul Palanivel Uma & Ali Hossein Nezhad Shirazi & Meysam Makaremi, 2018. "Thermal Conductance along Hexagonal Boron Nitride and Graphene Grain Boundaries," Energies, MDPI, vol. 11(6), pages 1-14, June.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1553-:d:152413
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/6/1553/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/6/1553/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zheng Liu & Yongji Gong & Wu Zhou & Lulu Ma & Jingjiang Yu & Juan Carlos Idrobo & Jeil Jung & Allan H. MacDonald & Robert Vajtai & Jun Lou & Pulickel M. Ajayan, 2013. "Ultrathin high-temperature oxidation-resistant coatings of hexagonal boron nitride," Nature Communications, Nature, vol. 4(1), pages 1-8, December.
    2. Xiangfan Xu & Luiz F. C. Pereira & Yu Wang & Jing Wu & Kaiwen Zhang & Xiangming Zhao & Sukang Bae & Cong Tinh Bui & Rongguo Xie & John T. L. Thong & Byung Hee Hong & Kian Ping Loh & Davide Donadio & B, 2014. "Length-dependent thermal conductivity in suspended single-layer graphene," Nature Communications, Nature, vol. 5(1), pages 1-6, September.
    3. O. Lehtinen & S. Kurasch & A.V. Krasheninnikov & U. Kaiser, 2013. "Atomic scale study of the life cycle of a dislocation in graphene from birth to annihilation," Nature Communications, Nature, vol. 4(1), pages 1-7, October.
    4. Yuanbo Zhang & Yan-Wen Tan & Horst L. Stormer & Philip Kim, 2005. "Experimental observation of the quantum Hall effect and Berry's phase in graphene," Nature, Nature, vol. 438(7065), pages 201-204, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shahin Mohammad Nejad & Masoud Bozorg Bigdeli & Rajat Srivastava & Matteo Fasano, 2019. "Heat Transfer at the Interface of Graphene Nanoribbons with Different Relative Orientations and Gaps," Energies, MDPI, vol. 12(5), pages 1-11, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anh-Luan Phan & Dai-Nam Le, 2021. "Electronic transport in two-dimensional strained Dirac materials under multi-step Fermi velocity barrier: transfer matrix method for supersymmetric systems," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(8), pages 1-16, August.
    2. Yoonseok Hwang & Jun-Won Rhim & Bohm-Jung Yang, 2021. "Geometric characterization of anomalous Landau levels of isolated flat bands," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. David T. Limmer & Chloe Y. Gao & Anthony R. Poggioli, 2021. "A large deviation theory perspective on nanoscale transport phenomena," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 94(7), pages 1-16, July.
    4. Daiyu Geng & Hui Zhou & Shaosheng Yue & Zhenyu Sun & Peng Cheng & Lan Chen & Sheng Meng & Kehui Wu & Baojie Feng, 2022. "Observation of gapped Dirac cones in a two-dimensional Su-Schrieffer-Heeger lattice," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    5. Kuichang Zuo & Xiang Zhang & Xiaochuan Huang & Eliezer F. Oliveira & Hua Guo & Tianshu Zhai & Weipeng Wang & Pedro J. J. Alvarez & Menachem Elimelech & Pulickel M. Ajayan & Jun Lou & Qilin Li, 2022. "Ultrahigh resistance of hexagonal boron nitride to mineral scale formation," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. M. T. Greenaway & P. Kumaravadivel & J. Wengraf & L. A. Ponomarenko & A. I. Berdyugin & J. Li & J. H. Edgar & R. Krishna Kumar & A. K. Geim & L. Eaves, 2021. "Graphene’s non-equilibrium fermions reveal Doppler-shifted magnetophonon resonances accompanied by Mach supersonic and Landau velocity effects," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    7. Zheyu Cheng & Yi-Jun Guan & Haoran Xue & Yong Ge & Ding Jia & Yang Long & Shou-Qi Yuan & Hong-Xiang Sun & Yidong Chong & Baile Zhang, 2024. "Three-dimensional flat Landau levels in an inhomogeneous acoustic crystal," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Talia Tene & Nataly Bonilla García & Miguel Ángel Sáez Paguay & John Vera & Marco Guevara & Cristian Vacacela Gomez & Stefano Bellucci, 2024. "Dataset for Electronics and Plasmonics in Graphene, Silicene, and Germanene Nanostrips," Data, MDPI, vol. 9(2), pages 1-18, January.
    9. Talal Yusaf & Abu Shadate Faisal Mahamude & Kaniz Farhana & Wan Sharuzi Wan Harun & Kumaran Kadirgama & Devarajan Ramasamy & Mohd Kamal Kamarulzaman & Sivarao Subramonian & Steve Hall & Hayder Abed Dh, 2022. "A Comprehensive Review on Graphene Nanoparticles: Preparation, Properties, and Applications," Sustainability, MDPI, vol. 14(19), pages 1-32, September.
    10. Lijun Zhu & Xiaoqiang Liu & Lin Li & Xinyi Wan & Ran Tao & Zhongniu Xie & Ji Feng & Changgan Zeng, 2023. "Signature of quantum interference effect in inter-layer Coulomb drag in graphene-based electronic double-layer systems," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    11. Xiaofeng Gao & Ling Zhu & Feng Yang & Lei Zhang & Wenhao Xu & Xian Zhou & Yongkang Huang & Houhong Song & Lili Lin & Xiaodong Wen & Ding Ma & Siyu Yao, 2023. "Subsurface nickel boosts the low-temperature performance of a boron oxide overlayer in propane oxidative dehydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Vladimir S. Prudkovskiy & Yiran Hu & Kaimin Zhang & Yue Hu & Peixuan Ji & Grant Nunn & Jian Zhao & Chenqian Shi & Antonio Tejeda & David Wander & Alessandro Cecco & Clemens B. Winkelmann & Yuxuan Jian, 2022. "An epitaxial graphene platform for zero-energy edge state nanoelectronics," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Mussad M. Alzahrani & Anurag Roy & Senthilarasu Sundaram & Tapas K. Mallick, 2021. "Investigation of Thermal Stress Arising in a Graphene Neutral Density Filter for Concentrated Photovoltaic System," Energies, MDPI, vol. 14(12), pages 1-9, June.
    14. Yuchen Lei & Junwei Ma & Jiaming Luo & Shenyang Huang & Boyang Yu & Chaoyu Song & Qiaoxia Xing & Fanjie Wang & Yuangang Xie & Jiasheng Zhang & Lei Mu & Yixuan Ma & Chong Wang & Hugen Yan, 2023. "Layer-dependent exciton polarizability and the brightening of dark excitons in few-layer black phosphorus," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Byungmin Sohn & Jeong Rae Kim & Choong H. Kim & Sangmin Lee & Sungsoo Hahn & Younsik Kim & Soonsang Huh & Donghan Kim & Youngdo Kim & Wonshik Kyung & Minsoo Kim & Miyoung Kim & Tae Won Noh & Changyoun, 2021. "Observation of metallic electronic structure in a single-atomic-layer oxide," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    16. Nauman Javed, Rana Muhammad & Al-Othman, Amani & Tawalbeh, Muhammad & Olabi, Abdul Ghani, 2022. "Recent developments in graphene and graphene oxide materials for polymer electrolyte membrane fuel cells applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    17. Yu Pei & Li Chen & Wonjae Jeon & Zhaowei Liu & Renkun Chen, 2023. "Low-dimensional heat conduction in surface phonon polariton waveguide," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    18. Jack Howard & Joshua Steier & Neel Haldolaarachchige & Kalani Hettiarachchilage, 2021. "Computational Prediction of New Series of Topological Ternary Compounds La X S ( X = Si, Ge, Sn) from First-Principles," J, MDPI, vol. 4(4), pages 1-12, September.
    19. Qiangsheng Lu & Jacob Cook & Xiaoqian Zhang & Kyle Y. Chen & Matthew Snyder & Duy Tung Nguyen & P. V. Sreenivasa Reddy & Bingchao Qin & Shaoping Zhan & Li-Dong Zhao & Pawel J. Kowalczyk & Simon A. Bro, 2022. "Realization of unpinned two-dimensional dirac states in antimony atomic layers," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    20. Xin Huang & Yangyu Guo & Yunhui Wu & Satoru Masubuchi & Kenji Watanabe & Takashi Taniguchi & Zhongwei Zhang & Sebastian Volz & Tomoki Machida & Masahiro Nomura, 2023. "Observation of phonon Poiseuille flow in isotopically purified graphite ribbons," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:6:p:1553-:d:152413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.