IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v20y2023i3p2254-d1047897.html
   My bibliography  Save this article

Contribution of Solar Radiation and Pollution to Parkinson’s Disease

Author

Listed:
  • Isabella Karakis

    (Environmental Epidemiology Division, Israel Ministry of Health, Jerusalem 9446724, Israel
    Negev Environmental Health Research Institute, Soroka University Medical Center, Beer-Sheva P.O. Box 651, Israel
    Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva P.O. Box 653, Israel)

  • Shaked Yarza

    (Negev Environmental Health Research Institute, Soroka University Medical Center, Beer-Sheva P.O. Box 651, Israel
    Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva P.O. Box 653, Israel)

  • Yair Zlotnik

    (Neurology Department, Soroka University Medical Center, Beer-Sheva P.O. Box 651, Israel)

  • Gal Ifergane

    (Neurology Department, Soroka University Medical Center, Beer-Sheva P.O. Box 651, Israel)

  • Itai Kloog

    (Negev Environmental Health Research Institute, Soroka University Medical Center, Beer-Sheva P.O. Box 651, Israel
    Department of Geography and Environmental Development, Faculty of Humanities and Social Sciences, Ben-Gurion University of the Negev, Beer-Sheva P.O. Box 653, Israel)

  • Kineret Grant-Sasson

    (Negev Environmental Health Research Institute, Soroka University Medical Center, Beer-Sheva P.O. Box 651, Israel
    Soroka Clinical Research Center, Soroka University Medical Center, Beer-Sheva P.O. Box 651, Israel)

  • Lena Novack

    (Negev Environmental Health Research Institute, Soroka University Medical Center, Beer-Sheva P.O. Box 651, Israel
    Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva P.O. Box 653, Israel)

Abstract

Background . Parkinson’s disease (PD) is believed to develop from epigenetic modulation of gene expression through environmental factors that accounts for up to 85% of all PD cases. The main objective of this study was to examine the association between PD onset and a cumulative exposure to potentially modifiable ambient exposures. Methods . The study population comprised 3343 incident PD cases and 31,324 non-PD controls in Southern Israel. The exposures were determined based on the monitoring stations and averaged per year. Their association with PD was modeled using a distributed lag non-linear model and presented as an effect of exposure to the 75th percentile as compared to the 50th percentile of each pollutant, accumulated over the span of 5 years prior to the PD. Results . We recorded an adverse effect of particulate matter of size ≤10 μm in diameter (PM 10 ) and solar radiation (SR) with odds ratio (OR) = 1.06 (95%CI: 1.02; 1.10) and 1.23 (95%CI: 1.08; 1.39), respectively. Ozone (O 3 ) was also adversely linked to PD, although with a borderline significance, OR: 1.12 (95%CI: 0.99; 1.25). Immigrants arriving in Israel after 1989 appeared to be more vulnerable to exposure to O 3 and SR. The dose response effect of SR, non-existent for Israeli-born (OR = 0.67, 95%CI: 0.40; 1.13), moderate for immigrants before 1989 (OR = 1.17, 95%CI: 0.98; 1.40) and relatively high for new immigrants (OR = 1.25, 95%CI: 1.25; 2.38) indicates an adaptation ability to SR. Conclusions . Our findings supported previous reports on adverse association of PD with exposure to PM 10 and O 3 . Additionally, we revealed a link of Parkinson’s Disease with SR that warrants an extensive analysis by research groups worldwide.

Suggested Citation

  • Isabella Karakis & Shaked Yarza & Yair Zlotnik & Gal Ifergane & Itai Kloog & Kineret Grant-Sasson & Lena Novack, 2023. "Contribution of Solar Radiation and Pollution to Parkinson’s Disease," IJERPH, MDPI, vol. 20(3), pages 1-18, January.
  • Handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2254-:d:1047897
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/20/3/2254/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/20/3/2254/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gasparrini, Antonio, 2011. "Distributed Lag Linear and Non-Linear Models in R: The Package dlnm," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 43(i08).
    2. Lars-Gunnar Gunnarsson & Lennart Bodin, 2019. "Occupational Exposures and Neurodegenerative Diseases—A Systematic Literature Review and Meta-Analyses," IJERPH, MDPI, vol. 16(3), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Martina S. Ragettli & Apolline Saucy & Benjamin Flückiger & Danielle Vienneau & Kees de Hoogh & Ana M. Vicedo-Cabrera & Christian Schindler & Martin Röösli, 2023. "Explorative Assessment of the Temperature–Mortality Association to Support Health-Based Heat-Warning Thresholds: A National Case-Crossover Study in Switzerland," IJERPH, MDPI, vol. 20(6), pages 1-16, March.
    2. Yunquan Zhang & Chuanhua Yu & Jin Yang & Lan Zhang & Fangfang Cui, 2017. "Diurnal Temperature Range in Relation to Daily Mortality and Years of Life Lost in Wuhan, China," IJERPH, MDPI, vol. 14(8), pages 1-11, August.
    3. Iara da Silva & Caroline Fernanda Hei Wikuats & Elizabeth Mie Hashimoto & Leila Droprinchinski Martins, 2022. "Effects of Environmental and Socioeconomic Inequalities on Health Outcomes: A Multi-Region Time-Series Study," IJERPH, MDPI, vol. 19(24), pages 1-22, December.
    4. Michael Tong & Berhanu Wondmagegn & Jianjun Xiang & Alana Hansen & Keith Dear & Dino Pisaniello & Blesson Varghese & Jianguo Xiao & Le Jian & Benjamin Scalley & Monika Nitschke & John Nairn & Hilary B, 2022. "Hospitalization Costs of Respiratory Diseases Attributable to Temperature in Australia and Projections for Future Costs in the 2030s and 2050s under Climate Change," IJERPH, MDPI, vol. 19(15), pages 1-16, August.
    5. Giorgia Adani & Tommaso Filippini & Caterina Garuti & Marcella Malavolti & Giulia Vinceti & Giovanna Zamboni & Manuela Tondelli & Chiara Galli & Manuela Costa & Marco Vinceti & Annalisa Chiari, 2020. "Environmental Risk Factors for Early-Onset Alzheimer’s Dementia and Frontotemporal Dementia: A Case-Control Study in Northern Italy," IJERPH, MDPI, vol. 17(21), pages 1-18, October.
    6. Kai Luo & Wenjing Li & Ruiming Zhang & Runkui Li & Qun Xu & Yang Cao, 2016. "Ambient Fine Particulate Matter Exposure and Risk of Cardiovascular Mortality: Adjustment of the Meteorological Factors," IJERPH, MDPI, vol. 13(11), pages 1-17, November.
    7. Miller, Reid & Golab, Lukasz & Rosenberg, Catherine, 2017. "Modelling weather effects for impact analysis of residential time-of-use electricity pricing," Energy Policy, Elsevier, vol. 105(C), pages 534-546.
    8. Yunfei Cheng & Tatiana Ermolieva & Gui-Ying Cao & Xiaoying Zheng, 2018. "Health Impacts of Exposure to Gaseous Pollutants and Particulate Matter in Beijing—A Non-Linear Analysis Based on the New Evidence," IJERPH, MDPI, vol. 15(9), pages 1-12, September.
    9. Malebo Sephule Makunyane & Hannes Rautenbach & Neville Sweijd & Joel Botai & Janine Wichmann, 2023. "Health Risks of Temperature Variability on Hospital Admissions in Cape Town, 2011–2016," IJERPH, MDPI, vol. 20(2), pages 1-18, January.
    10. Lee, Won Sang & Sohn, So Young, 2018. "Effects of standardization on the evolution of information and communications technology," Technological Forecasting and Social Change, Elsevier, vol. 132(C), pages 308-317.
    11. Bonnie R. Joubert & Marianthi-Anna Kioumourtzoglou & Toccara Chamberlain & Hua Yun Chen & Chris Gennings & Mary E. Turyk & Marie Lynn Miranda & Thomas F. Webster & Katherine B. Ensor & David B. Dunson, 2022. "Powering Research through Innovative Methods for Mixtures in Epidemiology (PRIME) Program: Novel and Expanded Statistical Methods," IJERPH, MDPI, vol. 19(3), pages 1-24, January.
    12. Yao Xiao & Chengzhen Meng & Suli Huang & Yanran Duan & Gang Liu & Shuyuan Yu & Ji Peng & Jinquan Cheng & Ping Yin, 2021. "Short-Term Effect of Temperature Change on Non-Accidental Mortality in Shenzhen, China," IJERPH, MDPI, vol. 18(16), pages 1-14, August.
    13. Xerxes T. Seposo & Tran Ngoc Dang & Yasushi Honda, 2015. "Evaluating the Effects of Temperature on Mortality in Manila City (Philippines) from 2006–2010 Using a Distributed Lag Nonlinear Model," IJERPH, MDPI, vol. 12(6), pages 1-16, June.
    14. Elisaveta P. Petkova & Radley M. Horton & Daniel A. Bader & Patrick L. Kinney, 2013. "Projected Heat-Related Mortality in the U.S. Urban Northeast," IJERPH, MDPI, vol. 10(12), pages 1-14, December.
    15. Mieczysław Szyszkowicz, 2022. "Concentration–Response Functions as an Essence of the Results from Lags," IJERPH, MDPI, vol. 19(13), pages 1-11, July.
    16. Joanna Wyszkowska & Colin Pritchard, 2022. "Open Questions on the Electromagnetic Field Contribution to the Risk of Neurodegenerative Diseases," IJERPH, MDPI, vol. 19(23), pages 1-15, December.
    17. Lu Wang, 2023. "Mediating Effect of Heat Waves between Ecosystem Services and Heat-Related Mortality of Characteristic Populations: Evidence from Jiangsu Province, China," IJERPH, MDPI, vol. 20(3), pages 1-17, February.
    18. Theophilus I. Emeto & Oyelola A. Adegboye & Reza A. Rumi & Mahboob-Ul I. Khan & Majeed Adegboye & Wasif A. Khan & Mahmudur Rahman & Peter K. Streatfield & Kazi M. Rahman, 2020. "Disparities in Risks of Malaria Associated with Climatic Variability among Women, Children and Elderly in the Chittagong Hill Tracts of Bangladesh," IJERPH, MDPI, vol. 17(24), pages 1-15, December.
    19. Xuemei Su & Yibin Cheng & Yu Wang & Yue Liu & Na Li & Yonghong Li & Xiaoyuan Yao, 2019. "Regional Temperature-Sensitive Diseases and Attributable Fractions in China," IJERPH, MDPI, vol. 17(1), pages 1-15, December.
    20. Temitope Christina Adebayo-Ojo & Janine Wichmann & Oluwaseyi Olalekan Arowosegbe & Nicole Probst-Hensch & Christian Schindler & Nino Künzli, 2022. "Short-Term Effects of PM 10 , NO 2 , SO 2 and O 3 on Cardio-Respiratory Mortality in Cape Town, South Africa, 2006–2015," IJERPH, MDPI, vol. 19(13), pages 1-20, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:20:y:2023:i:3:p:2254-:d:1047897. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.