IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i4p2273-d751423.html
   My bibliography  Save this article

Using Metrics of a Mixture Effect and Nutrition from an Observational Study for Consideration towards Causal Inference

Author

Listed:
  • Chris Gennings

    (Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA)

  • Katherine Svensson

    (Department of Health Sciences, Karlstad University, 65188 Karlstad, Sweden)

  • Alicja Wolk

    (Institute of Environmental Medicine, Karolinska Institutet, 17177 Stockholm, Sweden
    Department of Surgical Sciences, Uppsala University, 75237 Uppsala, Sweden)

  • Christian Lindh

    (Division of Occupational and Environmental Medicine, Lund University, 22381 Lund, Sweden)

  • Hannu Kiviranta

    (National Institute for Health and Welfare, FI-00271 Helsinki, Finland)

  • Carl-Gustaf Bornehag

    (Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
    Department of Health Sciences, Karlstad University, 65188 Karlstad, Sweden)

Abstract

Environmental exposures to a myriad of chemicals are associated with adverse health effects in humans, while good nutrition is associated with improved health. Single chemical in vivo and in vitro studies demonstrate causal links between the chemicals and outcomes, but such studies do not represent human exposure to environmental mixtures. One way of summarizing the effect of the joint action of chemical mixtures is through an empirically weighted index using weighted quantile sum (WQS) regression. My Nutrition Index (MNI) is a metric of overall dietary nutrition based on guideline values, including for pregnant women. Our objective is to demonstrate the use of an index as a metric for more causally linking human exposure to health outcomes using observational data. We use both a WQS index of 26 endocrine-disrupting chemicals (EDCs) and MNI using data from the SELMA pregnancy cohort to conduct causal inference using g-computation with counterfactuals for assumed either reduced prenatal EDC exposures or improved prenatal nutrition. Reducing the EDC exposure using the WQS index as a metric or improving dietary nutrition using MNI as a metric, the counterfactuals in a causal inference with one SD change indicate significant improvement in cognitive function. Evaluation of such a strategy may support decision makers for risk management of EDCs and individual choices for improving dietary nutrition.

Suggested Citation

  • Chris Gennings & Katherine Svensson & Alicja Wolk & Christian Lindh & Hannu Kiviranta & Carl-Gustaf Bornehag, 2022. "Using Metrics of a Mixture Effect and Nutrition from an Observational Study for Consideration towards Causal Inference," IJERPH, MDPI, vol. 19(4), pages 1-15, February.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:4:p:2273-:d:751423
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/4/2273/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/4/2273/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Erika Garcia & Robert Urman & Kiros Berhane & Rob McConnell & Frank Gilliland, 2019. "Effects of policy-driven hypothetical air pollutant interventions on childhood asthma incidence in southern California," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 116(32), pages 15883-15888, August.
    2. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    3. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Laura A. Rodriguez-Villamizar & Olga M. Medina & Oscar Flórez-Vargas & Eugenio Vilanova & Alvaro J. Idrovo & Santiago A. Araque-Rodriguez & José A. Henao & Luz H. Sánchez-Rodríguez, 2023. "Chemical Element Mixtures and Kidney Function in Mining and Non-Mining Settings in Northern Colombia," IJERPH, MDPI, vol. 20(3), pages 1-15, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    2. Oxana Babecka Kucharcukova & Jan Bruha, 2016. "Nowcasting the Czech Trade Balance," Working Papers 2016/11, Czech National Bank.
    3. Carstensen, Kai & Heinrich, Markus & Reif, Magnus & Wolters, Maik H., 2020. "Predicting ordinary and severe recessions with a three-state Markov-switching dynamic factor model," International Journal of Forecasting, Elsevier, vol. 36(3), pages 829-850.
    4. Hou-Tai Chang & Ping-Huai Wang & Wei-Fang Chen & Chen-Ju Lin, 2022. "Risk Assessment of Early Lung Cancer with LDCT and Health Examinations," IJERPH, MDPI, vol. 19(8), pages 1-12, April.
    5. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    6. Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
    7. Wang, Qiao & Zhou, Wei & Cheng, Yonggang & Ma, Gang & Chang, Xiaolin & Miao, Yu & Chen, E, 2018. "Regularized moving least-square method and regularized improved interpolating moving least-square method with nonsingular moment matrices," Applied Mathematics and Computation, Elsevier, vol. 325(C), pages 120-145.
    8. Dmitriy Drusvyatskiy & Adrian S. Lewis, 2018. "Error Bounds, Quadratic Growth, and Linear Convergence of Proximal Methods," Mathematics of Operations Research, INFORMS, vol. 43(3), pages 919-948, August.
    9. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    10. Lucian Belascu & Alexandra Horobet & Georgiana Vrinceanu & Consuela Popescu, 2021. "Performance Dissimilarities in European Union Manufacturing: The Effect of Ownership and Technological Intensity," Sustainability, MDPI, vol. 13(18), pages 1-19, September.
    11. Candelon, B. & Hurlin, C. & Tokpavi, S., 2012. "Sampling error and double shrinkage estimation of minimum variance portfolios," Journal of Empirical Finance, Elsevier, vol. 19(4), pages 511-527.
    12. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    13. Andrea Carriero & Todd E. Clark & Massimiliano Marcellino, 2022. "Specification Choices in Quantile Regression for Empirical Macroeconomics," Working Papers 22-25, Federal Reserve Bank of Cleveland.
    14. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    15. Shuichi Kawano, 2014. "Selection of tuning parameters in bridge regression models via Bayesian information criterion," Statistical Papers, Springer, vol. 55(4), pages 1207-1223, November.
    16. Yize Zhao & Matthias Chung & Brent A. Johnson & Carlos S. Moreno & Qi Long, 2016. "Hierarchical Feature Selection Incorporating Known and Novel Biological Information: Identifying Genomic Features Related to Prostate Cancer Recurrence," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1427-1439, October.
    17. Enrico Bergamini & Georg Zachmann, 2020. "Exploring EU’s Regional Potential in Low-Carbon Technologies," Sustainability, MDPI, vol. 13(1), pages 1-28, December.
    18. Qianyun Li & Runmin Shi & Faming Liang, 2019. "Drug sensitivity prediction with high-dimensional mixture regression," PLOS ONE, Public Library of Science, vol. 14(2), pages 1-18, February.
    19. Jung, Yoon Mo & Whang, Joyce Jiyoung & Yun, Sangwoon, 2020. "Sparse probabilistic K-means," Applied Mathematics and Computation, Elsevier, vol. 382(C).
    20. Changrong Yan & Dixin Zhang, 2013. "Sparse dimension reduction for survival data," Computational Statistics, Springer, vol. 28(4), pages 1835-1852, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:4:p:2273-:d:751423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.