IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i24p17092-d1008327.html
   My bibliography  Save this article

Mercury Sources, Emissions, Distribution and Bioavailability along an Estuarine Gradient under Semiarid Conditions in Northeast Brazil

Author

Listed:
  • Victor Lacerda Moura

    (Laboratório de Biogeoquímica Costeira, Instituto de Ciências do Mar-LABOMAR, Universidade Federal do Ceará-UFC, Av. da Abolição, 3207, Meireles, Fortaleza CEP 60165-081, CE, Brazil)

  • Luiz Drude de Lacerda

    (Laboratório de Biogeoquímica Costeira, Instituto de Ciências do Mar-LABOMAR, Universidade Federal do Ceará-UFC, Av. da Abolição, 3207, Meireles, Fortaleza CEP 60165-081, CE, Brazil)

Abstract

In the semiarid coast of northeast Brazil, climate change and changes in land use in drainage basins affect river hydrodynamics and hydrochemistry, modifying the estuarine environment and its biogeochemistry and increasing the mobilization of mercury (Hg). This is particularly relevant to the largest semiarid-encroached basin of the region, the Jaguaribe River. Major Hg sources to the Jaguaribe estuary are solid waste disposal, sewage and shrimp farming, the latter emitting effluents directly into the estuary. Total annual emission reaches 300 kg. In that estuary, the distribution of Hg in sediment and suspended particulate matter decreases seaward, whereas dissolved Hg concentrations increase sharply seaward, suggesting higher mobilization at the marine-influenced, mangrove-dominated portion of the estuary, mostly in the dry season. Concentrations of Hg in rooted macrophytes respond to Hg concentrations in sediment, being higher in the fluvial endmember of the estuary, whereas in floating aquatic macrophytes, Hg concentrations followed dissolved Hg concentrations in water and were also higher in the dry season. Animals (fish and crustaceans) also showed higher concentrations and bioaccumulation in the marine-influenced portion of the estuary. The variability of Hg concentrations in plants and sediments agrees with continental sources of Hg. However, Hg fractionation in water and contents in the animals respond to higher Hg availability in the marine-dominated end of the estuary. The results suggest that the impact of anthropogenic sources on Hg bioavailability is modulated by regional and global environmental changes and results from a conjunction of biological, ecological and hydrological characteristics. Finally, increasing aridity due to global warming, observed in northeast Brazil, as well as in other semiarid littorals worldwide, in addition to increased water overuse, augment Hg bioavailability and environmental risk and exposure of the local biota and the tradition of human populations exploiting the estuary’s biological resources.

Suggested Citation

  • Victor Lacerda Moura & Luiz Drude de Lacerda, 2022. "Mercury Sources, Emissions, Distribution and Bioavailability along an Estuarine Gradient under Semiarid Conditions in Northeast Brazil," IJERPH, MDPI, vol. 19(24), pages 1-16, December.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:17092-:d:1008327
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/24/17092/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/24/17092/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Shafaqat Ali & Zohaib Abbas & Muhammad Rizwan & Ihsan Elahi Zaheer & İlkay Yavaş & Aydın Ünay & Mohamed M. Abdel-DAIM & May Bin-Jumah & Mirza Hasanuzzaman & Dimitris Kalderis, 2020. "Application of Floating Aquatic Plants in Phytoremediation of Heavy Metals Polluted Water: A Review," Sustainability, MDPI, vol. 12(5), pages 1-33, March.
    2. Dana K. Sackett & W. Gregory Cope & James A. Rice & D. Derek Aday, 2013. "The Influence of Fish Length on Tissue Mercury Dynamics: Implications for Natural Resource Management and Human Health Risk," IJERPH, MDPI, vol. 10(2), pages 1-22, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Shahbaz Akhtar & Sohaib Aslam & Allah Ditta & Bedur Faleh A. Albalawi & Yoko Oki & Yoshitaka Nakashima, 2022. "Interspecific Variability in Growth Characteristics and Phytoremediation of Cu by Free-Floating Azolla Macrophytes," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    2. Fan Wei & Munazzam Jawad Shahid & Ghalia S. H. Alnusairi & Muhammad Afzal & Aziz Khan & Mohamed A. El-Esawi & Zohaib Abbas & Kunhua Wei & Ihsan Elahi Zaheer & Muhammad Rizwan & Shafaqat Ali, 2020. "Implementation of Floating Treatment Wetlands for Textile Wastewater Management: A Review," Sustainability, MDPI, vol. 12(14), pages 1-35, July.
    3. Monika Hejna & Elisabetta Onelli & Alessandra Moscatelli & Maurizio Bellotto & Cinzia Cristiani & Nadia Stroppa & Luciana Rossi, 2021. "Heavy-Metal Phytoremediation from Livestock Wastewater and Exploitation of Exhausted Biomass," IJERPH, MDPI, vol. 18(5), pages 1-16, February.
    4. Karunakaran Gowri Ahila & Balasubramani Ravindran & Vasanthy Muthunarayanan & Dinh Duc Nguyen & Xuan Cuong Nguyen & Soon Woong Chang & Van Khanh Nguyen & Chandran Thamaraiselvi, 2020. "Phytoremediation Potential of Freshwater Macrophytes for Treating Dye-Containing Wastewater," Sustainability, MDPI, vol. 13(1), pages 1-13, December.
    5. Linhe Sun & Wei Wang & Fengjun Liu & Jixiang Liu & Fengfeng Du & Xiaojing Liu & Yajun Chang & Dongrui Yao, 2022. "Differences in Nitrogen and Phosphorus Removal under Different Temperatures in Oenanthe javanica Cultivars," Agriculture, MDPI, vol. 12(10), pages 1-15, October.
    6. Jun Li & Xiongyi Miao & Yupei Hao & Zhouqing Xie & Shengzheng Zou & Changsong Zhou, 2020. "Health Risk Assessment of Metals (Cu, Pb, Zn, Cr, Cd, As, Hg, Se) in Angling Fish with Different Lengths Collected from Liuzhou, China," IJERPH, MDPI, vol. 17(7), pages 1-16, March.
    7. Sarah Dean & Muhammad Shahbaz Akhtar & Allah Ditta & Mohammad Valipour & Sohaib Aslam, 2022. "Microcosm Study on the Potential of Aquatic Macrophytes for Phytoremediation of Phosphorus-Induced Eutrophication," Sustainability, MDPI, vol. 14(24), pages 1-16, December.
    8. Jiashi Li & Xiaoqiang Dong & Xiaofeng Liu & Xin Xu & Wei Duan & Junboum Park & Lei Gao & Yisi Lu, 2022. "Comparative Study on the Adsorption Characteristics of Heavy Metal Ions by Activated Carbon and Selected Natural Adsorbents," Sustainability, MDPI, vol. 14(23), pages 1-17, November.
    9. Preeti Parihar & Naveen Chand & Surindra Suthar, 2022. "Treatment of High Nutrient-Loaded Wastewater in a Constructed Floating Wetland with Different Configurations: Role of Lantana Biochar Addition," Sustainability, MDPI, vol. 14(23), pages 1-12, December.
    10. Nuno Nunes & Carla Ragonezi & Carla S.S. Gouveia & Miguel Â.A. Pinheiro de Carvalho, 2021. "Review of Sewage Sludge as a Soil Amendment in Relation to Current International Guidelines: A Heavy Metal Perspective," Sustainability, MDPI, vol. 13(4), pages 1-20, February.
    11. Beric M. Gilbert & Ebrahim Hussain & Franz Jirsa & Annemariè Avenant-Oldewage, 2017. "Evaluation of Trace Element and Metal Accumulation and Edibility Risk Associated with Consumption of Labeo umbratus from the Vaal Dam, South Africa," IJERPH, MDPI, vol. 14(7), pages 1-15, June.
    12. Yean Ling Pang & Yen Ying Quek & Steven Lim & Siew Hoong Shuit, 2023. "Review on Phytoremediation Potential of Floating Aquatic Plants for Heavy Metals: A Promising Approach," Sustainability, MDPI, vol. 15(2), pages 1-23, January.
    13. Hannah I. Hoffman & Walter G. Bradley & Celia Y. Chen & Erik P. Pioro & Elijah W. Stommel & Angeline S. Andrew, 2021. "Amyotrophic Lateral Sclerosis Risk, Family Income, and Fish Consumption Estimates of Mercury and Omega-3 PUFAs in the United States," IJERPH, MDPI, vol. 18(9), pages 1-10, April.
    14. Carolina Faccio Demarco & Maurízio Silveira Quadro & Filipe Selau Carlos & Simone Pieniz & Luiza Beatriz Gamboa Araújo Morselli & Robson Andreazza, 2023. "Bioremediation of Aquatic Environments Contaminated with Heavy Metals: A Review of Mechanisms, Solutions and Perspectives," Sustainability, MDPI, vol. 15(2), pages 1-15, January.
    15. Tara K. B. Johnson & Catherine E. LePrevost & Thomas J. Kwak & W. Gregory Cope, 2018. "Selenium, Mercury, and Their Molar Ratio in Sportfish from Drinking Water Reservoirs," IJERPH, MDPI, vol. 15(9), pages 1-17, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:17092-:d:1008327. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.