IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i24p16896-d1005201.html
   My bibliography  Save this article

Effects of Exercise Training on Neurotrophic Factors and Blood–Brain Barrier Permeability in Young-Old and Old-Old Women

Author

Listed:
  • Su-Youn Cho

    (Exercise Physiology Laboratory, Department of Physical Education, Yonsei University, Seoul 03722, Republic of Korea)

  • Hee-Tae Roh

    (Department of Sports Science, College of Health Science, Sun Moon University, 70 Sunmoon-ro 221 beon-gil, Tangjeong-myeon, Asan-si 31460, Republic of Korea)

Abstract

Aging and regular exercise may have opposite effects on brain health, and although oxidative stress and sirtuins may be involved in these effects, studies on this topic are limited. Accordingly, the present study aimed to verify the effect of exercise training on oxidant–antioxidant balance, neurotrophic factors, blood–brain barrier permeability, and sirtuins in young-old and old-old women. The study participants were 12 women aged 65–74 years (Young-Old group) and 12 women aged 75–84 years (Old-Old group). All of the selected participants performed exercise training consisting of treadmill walking and resistance band exercise three times a week for 12 weeks. Blood samples were collected before and after exercise training to analyze serum oxidant–antioxidant markers (reactive oxygen species [ROS], superoxide dismutase [SOD]), neurotrophic factor (brain-derived neurotrophic factor [BDNF], vascular endothelial growth factor [VEGF]) levels, and blood–brain barrier permeability marker (S100 calcium-binding protein β [S100β], matrix metalloproteinase-9 [MMP-9]) levels, and sirtuin (SIRT-1, SIRT-2, SIRT-3) levels. The Young-Old group showed significantly increased SOD, BDNF, VEGF, SIRT-1, and SIRT-3 levels after training in comparison with the levels before training ( p < 0.05), and a significantly higher BDNF level than the Old-Old group after training ( p < 0.05). On the other hand, the Old-Old group showed significantly higher SIRT-1 levels after training in comparison with the levels before training ( p < 0.05). Thus, exercise training may be effective in increasing the levels of neurotropic factors and reducing blood–brain barrier permeability in the elderly women, and increased antioxidant capacity and elevated levels of sirtuins are believed to play a major role in these effects. The positive effect of exercise may be greater in participants of relatively young age.

Suggested Citation

  • Su-Youn Cho & Hee-Tae Roh, 2022. "Effects of Exercise Training on Neurotrophic Factors and Blood–Brain Barrier Permeability in Young-Old and Old-Old Women," IJERPH, MDPI, vol. 19(24), pages 1-10, December.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:16896-:d:1005201
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/24/16896/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/24/16896/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bernice L. Neugarten, 1974. "Age Groups in American Society and the Rise of the Young-Old," The ANNALS of the American Academy of Political and Social Science, , vol. 415(1), pages 187-198, September.
    2. Michael T. Lin & M. Flint Beal, 2006. "Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases," Nature, Nature, vol. 443(7113), pages 787-795, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi Chen & Yi Sun & Bo Kyong Seo, 2022. "The Effects of Public Open Space on Older People’s Well-Being: From Neighborhood Social Cohesion to Place Dependence," IJERPH, MDPI, vol. 19(23), pages 1-16, December.
    2. Trish Hafford-Letchfield & Tricia McQuarrie & Carmel Clancy & Betsy Thom & Briony Jain, 2020. "Community Based Interventions for Problematic Substance Use in Later Life: A Systematic Review of Evaluated Studies and Their Outcomes," IJERPH, MDPI, vol. 17(21), pages 1-26, October.
    3. Jinjian Huang & Rong Yang & Jiao Jiao & Ze Li & Penghui Wang & Ye Liu & Sicheng Li & Canwen Chen & Zongan Li & Guiwen Qu & Kang Chen & Xiuwen Wu & Bo Chi & Jianan Ren, 2023. "A click chemistry-mediated all-peptide cell printing hydrogel platform for diabetic wound healing," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. Yueli Yang & Xueyang Bai & Fanghao Hu, 2024. "Photoswitchable polyynes for multiplexed stimulated Raman scattering microscopy with reversible light control," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Cesare Granata & Nikeisha J. Caruana & Javier Botella & Nicholas A. Jamnick & Kevin Huynh & Jujiao Kuang & Hans A. Janssen & Boris Reljic & Natalie A. Mellett & Adrienne Laskowski & Tegan L. Stait & A, 2021. "High-intensity training induces non-stoichiometric changes in the mitochondrial proteome of human skeletal muscle without reorganisation of respiratory chain content," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    6. Ziqi Liu & Fuhu Guo & Yufan Zhu & Shengnan Qin & Yuchen Hou & Haotian Guo & Feng Lin & Peng R. Chen & Xinyuan Fan, 2024. "Bioorthogonal photocatalytic proximity labeling in primary living samples," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    7. Ting Huang & Ruyi Lin & Yuanqin Su & Hao Sun & Xixi Zheng & Jinsong Zhang & Xiaoyan Lu & Baiqin Zhao & Xinchi Jiang & Lingling Huang & Ni Li & Jing Shi & Xiaohui Fan & Donghang Xu & Tianyuan Zhang & J, 2023. "Efficient intervention for pulmonary fibrosis via mitochondrial transfer promoted by mitochondrial biogenesis," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    8. Minfeng Huo & Zhimin Tang & Liying Wang & Linlin Zhang & Haiyan Guo & Yu Chen & Ping Gu & Jianlin Shi, 2022. "Magnesium hexacyanoferrate nanocatalysts attenuate chemodrug-induced cardiotoxicity through an anti-apoptosis mechanism driven by modulation of ferrous iron," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    9. Yingyi Zhang & Ge Chen & Yue He & Xinyue Jiang & Caiying Xue, 2022. "Social Interaction in Public Spaces and Well-Being among Elderly Women: Towards Age-Friendly Urban Environments," IJERPH, MDPI, vol. 19(2), pages 1-14, January.
    10. Ying Shao & Zhongli Chen & Lingling Wu, 2019. "Oxidative Stress Effects of Soluble Sulfide on Human Hepatocyte Cell Line LO2," IJERPH, MDPI, vol. 16(9), pages 1-11, May.
    11. Peng Liao & Long Chen & Hao Zhou & Jiong Mei & Ziming Chen & Bingqi Wang & Jerry Q. Feng & Guangyi Li & Sihan Tong & Jian Zhou & Siyuan Zhu & Yu Qian & Yao Zong & Weiguo Zou & Hao Li & Wenkan Zhang & , 2024. "Osteocyte mitochondria regulate angiogenesis of transcortical vessels," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    12. Cheng-Jie Zhou & Xing-Yue Wang & Yan-Hua Dong & Dong-Hui Wang & Zhe Han & Xiao-Jie Zhang & Qing-Yuan Sun & John Carroll & Cheng-Guang Liang, 2022. "CENP-F-dependent DRP1 function regulates APC/C activity during oocyte meiosis I," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    13. Pankaj C. Patel & Marcus T. Wolfe, 2021. "Under Pressure: The Effect of Antioxidants on Health Consequences Related to Oxidative Stress," Entrepreneurship Theory and Practice, , vol. 45(1), pages 211-241, January.
    14. Mohsen S. Al-Omar & Mamuna Naz & Salman A. A. Mohammed & Momina Mansha & Mohd N. Ansari & Najeeb U. Rehman & Mehnaz Kamal & Hamdoon A. Mohammed & Mohammad Yusuf & Abubaker M. Hamad & Naseem Akhtar & R, 2020. "Pyrethroid-Induced Organ Toxicity and Anti-Oxidant-Supplemented Amelioration of Toxicity and Organ Damage: The Protective Roles of Ascorbic Acid and α-Tocopherol," IJERPH, MDPI, vol. 17(17), pages 1-28, August.
    15. Ami Kobayashi & Kotaro Azuma & Toshihiko Takeiwa & Toshimori Kitami & Kuniko Horie & Kazuhiro Ikeda & Satoshi Inoue, 2023. "A FRET-based respirasome assembly screen identifies spleen tyrosine kinase as a target to improve muscle mitochondrial respiration and exercise performance in mice," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    16. Xin Liu, 2018. "The Effect of Rotenone on Ndfip1 in MES23.5 Cells," International Journal of Sciences, Office ijSciences, vol. 7(05), pages 39-43, May.
    17. Matthias Kettwig & Katharina Ternka & Kristin Wendland & Dennis Manfred Krüger & Silvia Zampar & Charlotte Schob & Jonas Franz & Abhishek Aich & Anne Winkler & M. Sadman Sakib & Lalit Kaurani & Robert, 2021. "Interferon-driven brain phenotype in a mouse model of RNaseT2 deficient leukoencephalopathy," Nature Communications, Nature, vol. 12(1), pages 1-18, December.
    18. H. Shellae Versey & Serene Murad & Paul Willems & Mubarak Sanni, 2019. "Beyond Housing: Perceptions of Indirect Displacement, Displacement Risk, and Aging Precarity as Challenges to Aging in Place in Gentrifying Cities," IJERPH, MDPI, vol. 16(23), pages 1-21, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:24:p:16896-:d:1005201. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.