IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v19y2022i21p14062-d956175.html
   My bibliography  Save this article

Empirical Dietary Patterns Associated with Food Insecurity in U.S. Cancer Survivors: NHANES 1999–2018

Author

Listed:
  • Christian A. Maino Vieytes

    (Division of Nutritional Sciences, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA)

  • Ruoqing Zhu

    (Department of Statistics, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA)

  • Francesca Gany

    (Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA)

  • Amirah Burton-Obanla

    (Division of Nutritional Sciences, The University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA)

  • Anna E. Arthur

    (Department of Dietetics and Nutrition, The University of Kansas Medical Center, Kansas City, KS 66160, USA)

Abstract

(1) Background: Food insecurity (FI) is a public health and sociodemographic phenomenon that besets many cancer survivors in the United States. FI in cancer survivors may arise as a consequence of financial toxicity stemming from treatment costs, physical impairment, labor force egress, or a combination of those factors. To our knowledge, an understanding of the dietary intake practices of this population has not been delineated but is imperative for addressing the needs of this vulnerable population; (2) Methods: Using data from NHANES, 1999–2018, we characterized major dietary patterns in the food insecure cancer survivor population using: i. penalized logistic regression (logit) and ii. principal components analysis (PCA). We validated these patterns by examining the association of those patterns with food insecurity in the cancer population; (3) Results: Four dietary patterns were extracted with penalized logit and two with PCA. In the pattern validation phase, we found several patterns exhibited strong associations with FI. The FI, SNAP, and Household Size patterns (all extracted with penalized logit) harbored the strongest associations and there was evidence of stronger associations in those moderately removed from a cancer diagnosis (≥2 and <6 years since diagnosis); (4) Conclusions: FI may play an influential role on the dietary intake patterns of cancer survivors in the U.S. The results highlight the relevance of FI screening and monitoring for cancer survivors.

Suggested Citation

  • Christian A. Maino Vieytes & Ruoqing Zhu & Francesca Gany & Amirah Burton-Obanla & Anna E. Arthur, 2022. "Empirical Dietary Patterns Associated with Food Insecurity in U.S. Cancer Survivors: NHANES 1999–2018," IJERPH, MDPI, vol. 19(21), pages 1-21, October.
  • Handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14062-:d:956175
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/19/21/14062/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/19/21/14062/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lumley, Thomas, 2004. "Analysis of Complex Survey Samples," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 9(i08).
    2. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ying Zhang & Bing Yu & Qibin Qi & Ali Azarbarzin & Han Chen & Neomi A. Shah & Alberto R. Ramos & Phyllis C. Zee & Jianwen Cai & Martha L. Daviglus & Eric Boerwinkle & Robert Kaplan & Peter Y. Liu & Su, 2024. "Metabolomic profiles of sleep-disordered breathing are associated with hypertension and diabetes mellitus development," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    3. Ernesto Carrella & Richard M. Bailey & Jens Koed Madsen, 2018. "Indirect inference through prediction," Papers 1807.01579, arXiv.org.
    4. Rui Wang & Naihua Xiu & Kim-Chuan Toh, 2021. "Subspace quadratic regularization method for group sparse multinomial logistic regression," Computational Optimization and Applications, Springer, vol. 79(3), pages 531-559, July.
    5. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    6. Masakazu Higuchi & Mitsuteru Nakamura & Shuji Shinohara & Yasuhiro Omiya & Takeshi Takano & Daisuke Mizuguchi & Noriaki Sonota & Hiroyuki Toda & Taku Saito & Mirai So & Eiji Takayama & Hiroo Terashi &, 2022. "Detection of Major Depressive Disorder Based on a Combination of Voice Features: An Exploratory Approach," IJERPH, MDPI, vol. 19(18), pages 1-13, September.
    7. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    8. Vincent, Martin & Hansen, Niels Richard, 2014. "Sparse group lasso and high dimensional multinomial classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 771-786.
    9. Maciej Berk{e}sewicz & Herman Cherniaiev & Robert Pater, 2021. "Estimating the number of entities with vacancies using administrative and online data," Papers 2106.03263, arXiv.org.
    10. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.
    11. Perrot-Dockès Marie & Lévy-Leduc Céline & Chiquet Julien & Sansonnet Laure & Brégère Margaux & Étienne Marie-Pierre & Robin Stéphane & Genta-Jouve Grégory, 2018. "A variable selection approach in the multivariate linear model: an application to LC-MS metabolomics data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 17(5), pages 1-14, October.
    12. Fan, Jianqing & Jiang, Bai & Sun, Qiang, 2022. "Bayesian factor-adjusted sparse regression," Journal of Econometrics, Elsevier, vol. 230(1), pages 3-19.
    13. Jun Li & Serguei Netessine & Sergei Koulayev, 2018. "Price to Compete … with Many: How to Identify Price Competition in High-Dimensional Space," Management Science, INFORMS, vol. 64(9), pages 4118-4136, September.
    14. Sung Jae Jun & Sokbae Lee, 2020. "Causal Inference under Outcome-Based Sampling with Monotonicity Assumptions," Papers 2004.08318, arXiv.org, revised Oct 2023.
    15. Rina Friedberg & Julie Tibshirani & Susan Athey & Stefan Wager, 2018. "Local Linear Forests," Papers 1807.11408, arXiv.org, revised Sep 2020.
    16. Xiangwei Li & Thomas Delerue & Ben Schöttker & Bernd Holleczek & Eva Grill & Annette Peters & Melanie Waldenberger & Barbara Thorand & Hermann Brenner, 2022. "Derivation and validation of an epigenetic frailty risk score in population-based cohorts of older adults," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    17. Hewamalage, Hansika & Bergmeir, Christoph & Bandara, Kasun, 2021. "Recurrent Neural Networks for Time Series Forecasting: Current status and future directions," International Journal of Forecasting, Elsevier, vol. 37(1), pages 388-427.
    18. Hui Xiao & Yiguo Sun, 2020. "Forecasting the Returns of Cryptocurrency: A Model Averaging Approach," JRFM, MDPI, vol. 13(11), pages 1-15, November.
    19. Christopher J Greenwood & George J Youssef & Primrose Letcher & Jacqui A Macdonald & Lauryn J Hagg & Ann Sanson & Jenn Mcintosh & Delyse M Hutchinson & John W Toumbourou & Matthew Fuller-Tyszkiewicz &, 2020. "A comparison of penalised regression methods for informing the selection of predictive markers," PLOS ONE, Public Library of Science, vol. 15(11), pages 1-14, November.
    20. Brian Quistorff & Gentry Johnson, 2020. "Machine Learning for Experimental Design: Methods for Improved Blocking," Papers 2010.15966, arXiv.org.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:19:y:2022:i:21:p:14062-:d:956175. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.