IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i18p6585-d411405.html
   My bibliography  Save this article

Pollution Characteristics, Transport Pathways, and Potential Source Regions of PM 2.5 and PM 10 in Changchun City in 2018

Author

Listed:
  • Fanhao Meng

    (College of New Energy and Environment, Jilin University, Changchun 130012, China)

  • Ju Wang

    (College of New Energy and Environment, Jilin University, Changchun 130012, China)

  • Tongnan Li

    (College of New Energy and Environment, Jilin University, Changchun 130012, China)

  • Chunsheng Fang

    (College of New Energy and Environment, Jilin University, Changchun 130012, China)

Abstract

Air pollution has attracted increasing attention in recent years. Cluster analysis, scene analysis, and the potential source contribution function (PSCF), based on the backward trajectory model, were used to identify the transport pathways and potential source regions of PM 2.5 and PM 10 (particulate matter with an aerodynamic diameter of not more than 2.5 µm and 10 µm) in Changchun in 2018. In addition, the PSCF was slightly improved. The highest average monthly concentrations of PM 2.5 and PM 10 appeared in March and April, when they reached 53.9μg/m 3 and 120.0 μg/m 3 , respectively. The main potential source regions of PM 2.5 and PM 10 were generally similar: western Jilin Province, northwestern Inner Mongolia, northeastern Liaoning Province, and the Yellow Sea region. The secondary potential source regions were southern Russia, central Mongolia, western Shandong Province, eastern Hebei Province, and eastern Jiangsu Province. The northwest and southwest directions were found to be the two pathways that mainly affect the air quality of Changchun City. Moreover, the northwestern pathway had a larger potential contribution source area than the southwestern pathway. The airflow in the southwest direction came from Liaoning Province, Shandong Province, and the Yellow Sea region. This mainly occurred in summer; its transmission distance was short; it had a relatively higher weight potential source contribution function (WPSCF) value; it can be regarded as a local source; and its representative pollutants were SO 2 (sulfur dioxide), CO (carbon monoxide), and O 3 (ozone). The northwestern pathway passed through Russia, Mongolia, and Inner Mongolia. The transmission distance of this pathway was longer; it had a relatively lower WPSCF value; it can be considered as a natural source to a certain extent; it mainly occurred in autumn and, especially, in winter; and the representative pollutants of this pathway were NO (nitric oxide), NOx (nitrogen oxide), PM 2.5 , and PM 10 .

Suggested Citation

  • Fanhao Meng & Ju Wang & Tongnan Li & Chunsheng Fang, 2020. "Pollution Characteristics, Transport Pathways, and Potential Source Regions of PM 2.5 and PM 10 in Changchun City in 2018," IJERPH, MDPI, vol. 17(18), pages 1-19, September.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:18:p:6585-:d:411405
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/18/6585/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/18/6585/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Austin, Wes & Carattini, Stefano & Gomez-Mahecha, John & Pesko, Michael F., 2023. "The effects of contemporaneous air pollution on COVID-19 morbidity and mortality," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:18:p:6585-:d:411405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.