IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v17y2020i13p4692-d378107.html
   My bibliography  Save this article

Ceramsite Facilitated Microbial Degradation of Pollutants in Domestic Wastewater

Author

Listed:
  • Qiong Wan

    (School of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an 710054, China)

  • Qingji Han

    (Xi’an Research and Design Institute of Wall & Roof Materials Co., Ltd., Xi’an 710061, China)

  • Hailin Luo

    (State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou 510535, China)

  • Tao He

    (State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou 510535, China)

  • Feng Xue

    (Xi’an Pengyi Environmental Engineering co. Ltd., Xi’an 710054, China)

  • Zihuizhong Ye

    (Stuart Country Day School, Princeton, NJ 08540, USA)

  • Chen Chen

    (State Environmental Protection Key Laboratory of Urban Ecological Environment Simulation and Protection, South China Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Guangzhou 510535, China)

  • Shan Huang

    (Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA)

Abstract

Although constructed wetlands (CWs) are widely used around the world with various substrates, the mechanisms of how these modified substrates affect wastewater treatment are still unknown. In this study, CW microcosms were established with and without ceramsite as a substrate, and the wastewater treatment efficiencies were evaluated during 71 days of incubation. Using the 16S rRNA high-through sequencing, the mechanisms of how CW substrate changed the microbial community was quantified. The results showed that compared to soil as substrate, the use of ceramsite as substrate material enhanced the removal of pollutants from CW systems, particularly under a short retention time (1.5-day) condition. There were more beneficial microorganism groups (nitrogen, sulfur, phosphate) in the ceramsite CW system than the non-ceramsite CW system, particularly in the bottom layers. Moreover, the CW with ceramsite substrate had more nitrification function. All of these results suggested that the ceramsite CW system enhanced the removal of pollutants because it increased the concentration of key microbes that are necessarily for nutrient cycles.

Suggested Citation

  • Qiong Wan & Qingji Han & Hailin Luo & Tao He & Feng Xue & Zihuizhong Ye & Chen Chen & Shan Huang, 2020. "Ceramsite Facilitated Microbial Degradation of Pollutants in Domestic Wastewater," IJERPH, MDPI, vol. 17(13), pages 1-13, June.
  • Handle: RePEc:gam:jijerp:v:17:y:2020:i:13:p:4692-:d:378107
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/17/13/4692/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/17/13/4692/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Holger Daims & Elena V. Lebedeva & Petra Pjevac & Ping Han & Craig Herbold & Mads Albertsen & Nico Jehmlich & Marton Palatinszky & Julia Vierheilig & Alexandr Bulaev & Rasmus H. Kirkegaard & Martin vo, 2015. "Complete nitrification by Nitrospira bacteria," Nature, Nature, vol. 528(7583), pages 504-509, December.
    2. Luis Carlos Sandoval-Herazo & Alejandro Alvarado-Lassman & José Luis Marín-Muñiz & Juan Manuel Méndez-Contreras & Sergio Aurelio Zamora-Castro, 2018. "Effects of the Use of Ornamental Plants and Different Substrates in the Removal of Wastewater Pollutants through Microcosms of Constructed Wetlands," Sustainability, MDPI, vol. 10(5), pages 1-19, May.
    3. Yinghai Wu & Tao He & Chen Chen & Xiaohang Fang & Dongyang Wei & Jing Yang & Renduo Zhang & Rui Han, 2019. "Impacting Microbial Communities and Absorbing Pollutants by Canna Indica and Cyperus Alternifolius in a Full-Scale Constructed Wetland System," IJERPH, MDPI, vol. 16(5), pages 1-14, March.
    4. Maartje A. H. J. van Kessel & Daan R. Speth & Mads Albertsen & Per H. Nielsen & Huub J. M. Op den Camp & Boran Kartal & Mike S. M. Jetten & Sebastian Lücker, 2015. "Complete nitrification by a single microorganism," Nature, Nature, vol. 528(7583), pages 555-559, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Han Zhang & Jiaxin Shi & Cuibai Chen & Meng Yang & Jianping Lu & Baogang Zhang, 2022. "Heterotrophic Bioleaching of Vanadium from Low-Grade Stone Coal by Aerobic Microbial Consortium," IJERPH, MDPI, vol. 19(20), pages 1-12, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. He, Yanying & Li, Yiming & Li, Xuecheng & Liu, Yingrui & Wang, Yufen & Guo, Haixiao & Hou, Jiaqi & Zhu, Tingting & Liu, Yiwen, 2023. "Net-zero greenhouse gas emission from wastewater treatment: Mechanisms, opportunities and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    2. Hannaford, Naomi E. & Heaps, Sarah E. & Nye, Tom M.W. & Curtis, Thomas P. & Allen, Ben & Golightly, Andrew & Wilkinson, Darren J., 2023. "A sparse Bayesian hierarchical vector autoregressive model for microbial dynamics in a wastewater treatment plant," Computational Statistics & Data Analysis, Elsevier, vol. 179(C).
    3. Sharif Hossain & Christopher W. K. Chow & David Cook & Emma Sawade & Guna A. Hewa, 2022. "Review of Nitrification Monitoring and Control Strategies in Drinking Water System," IJERPH, MDPI, vol. 19(7), pages 1-31, March.
    4. Nkulu Rolly Kabange & Youngho Kwon & So-Myeong Lee & Ju-Won Kang & Jin-Kyung Cha & Hyeonjin Park & Gamenyah Daniel Dzorkpe & Dongjin Shin & Ki-Won Oh & Jong-Hee Lee, 2023. "Mitigating Greenhouse Gas Emissions from Crop Production and Management Practices, and Livestock: A Review," Sustainability, MDPI, vol. 15(22), pages 1-41, November.
    5. Shengbo Gu & Leibin Liu & Xiaojie Zhuang & Jinsheng Qiu & Zhi Zhou, 2022. "Enhanced Nitrogen Removal in a Pilot-Scale Anoxic/Aerobic (A/O) Process Coupling PE Carrier and Nitrifying Bacteria PE Carrier: Performance and Microbial Shift," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    6. Luis Sandoval & José Luis Marín-Muñiz & Sergio Aurelio Zamora-Castro & Fabiola Sandoval-Salas & Alejandro Alvarado-Lassman, 2019. "Evaluation of Wastewater Treatment by Microcosms of Vertical Subsurface Wetlands in Partially Saturated Conditions Planted with Ornamental Plants and Filled with Mineral and Plastic Substrates," IJERPH, MDPI, vol. 16(2), pages 1-15, January.
    7. Yi Li & Xinqi Chen & Xinzi Wang & Jiahui Shang & Lihua Niu & Longfei Wang & Huanjun Zhang & Wenlong Zhang, 2022. "The Effects of Paroxetine on Benthic Microbial Food Web and Nitrogen Transformation in River Sediments," IJERPH, MDPI, vol. 19(21), pages 1-14, November.
    8. Katia Ghezali & Nourredine Bentahar & Narcis Barsan & Valentin Nedeff & Emilian Moșneguțu, 2022. "Potential of Canna indica in Vertical Flow Constructed Wetlands for Heavy Metals and Nitrogen Removal from Algiers Refinery Wastewater," Sustainability, MDPI, vol. 14(8), pages 1-14, April.
    9. Montaño San Agustin, Daniela & Orta Ledesma, Maria Teresa & Monje Ramírez, Ignacio & Yáñez Noguez, Isaura & Luna Pabello, Víctor Manuel & Velasquez-Orta, Sharon B., 2022. "A non-sterile heterotrophic microalgal process for dual biomass production and carbon removal from swine wastewater," Renewable Energy, Elsevier, vol. 181(C), pages 592-603.
    10. Agata Novara & Valentina Catania & Marco Tolone & Luciano Gristina & Vito Armando Laudicina & Paola Quatrini, 2020. "Cover Crop Impact on Soil Organic Carbon, Nitrogen Dynamics and Microbial Diversity in a Mediterranean Semiarid Vineyard," Sustainability, MDPI, vol. 12(8), pages 1-18, April.
    11. Yinghai Wu & Xinyu Rong & Cuiya Zhang & Renduo Zhang & Tao He & Yunjun Yu & Zhuangming Zhao & Jing Yang & Rui Han, 2020. "Response of the Intertidal Microbial Community Structure and Metabolic Profiles to Zinc Oxide Nanoparticle Exposure," IJERPH, MDPI, vol. 17(7), pages 1-15, March.
    12. Erick Arturo Betanzo-Torres & María de los Ángeles Piñar-Álvarez & Celia Gabriela Sierra-Carmona & Luis Enrique García Santamaria & Cecilia-Irene Loeza-Mejía & José Luis Marín-Muñiz & Luis Carlos Sand, 2021. "Proposal of Ecotechnologies for Tilapia ( Oreochromis niloticus ) Production in Mexico: Economic, Environmental, and Social Implications," Sustainability, MDPI, vol. 13(12), pages 1-18, June.
    13. Pietro Denisi & Nicola Biondo & Giuseppe Bombino & Adele Folino & Demetrio Antonio Zema & Santo Marcello Zimbone, 2021. "A Combined System Using Lagoons and Constructed Wetlands for Swine Wastewater Treatment," Sustainability, MDPI, vol. 13(22), pages 1-14, November.
    14. Sofia Dias & Ana P. Mucha & Rute Duarte Crespo & Pedro Rodrigues & C. Marisa R. Almeida, 2020. "Livestock Wastewater Treatment in Constructed Wetlands for Agriculture Reuse," IJERPH, MDPI, vol. 17(22), pages 1-21, November.
    15. Ghazal Srivastava & Aparna Kapoor & Absar Ahmad Kazmi, 2023. "Improved Biological Phosphorus Removal under Low Solid Retention Time Regime in Full-Scale Sequencing Batch Reactor," Sustainability, MDPI, vol. 15(10), pages 1-22, May.
    16. Xingjia He & Sen Li & Fengzhi Wu, 2021. "Responses of Ammonia-Oxidizing Microorganisms to Intercropping Systems in Different Seasons," Agriculture, MDPI, vol. 11(3), pages 1-17, February.
    17. Liron Friedman & Kartik Chandran & Dror Avisar & Edris Taher & Amanda Kirchmaier-Hurpia & Hadas Mamane, 2022. "Accelerating Microbial Activity of Soil Aquifer Treatment by Hydrogen Peroxide," Energies, MDPI, vol. 15(11), pages 1-14, May.
    18. Irma Zitácuaro-Contreras & Monserrat Vidal-Álvarez & María Graciela Hernández y Orduña & Sergio Aurelio Zamora-Castro & Erick Arturo Betanzo-Torres & José Luis Marín-Muñíz & Luis Carlos Sandoval-Heraz, 2021. "Environmental, Economic, and Social Potentialities of Ornamental Vegetation Cultivated in Constructed Wetlands of Mexico," Sustainability, MDPI, vol. 13(11), pages 1-14, June.
    19. Leiashvily, Paata, 2022. "The Economy as a Complex System of Economic Actions: In Search of a New Paradigm," MPRA Paper 116226, University Library of Munich, Germany.
    20. Md Ekhlasur Rahman & Mohd Izuan Effendi Bin Halmi & Mohd Yusoff Bin Abd Samad & Md Kamal Uddin & Khairil Mahmud & Mohd Yunus Abd Shukor & Siti Rozaimah Sheikh Abdullah & S M Shamsuzzaman, 2020. "Design, Operation and Optimization of Constructed Wetland for Removal of Pollutant," IJERPH, MDPI, vol. 17(22), pages 1-40, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:17:y:2020:i:13:p:4692-:d:378107. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.