IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v15y2018i7p1376-d155424.html
   My bibliography  Save this article

Spatio-Temporal Modeling of Zika and Dengue Infections within Colombia

Author

Listed:
  • Daniel Adyro Martínez-Bello

    (Department of Statistics and Operations Research, Faculty of Mathematics, University of Valencia, 46100 Valencia, Spain)

  • Antonio López-Quílez

    (Department of Statistics and Operations Research, Faculty of Mathematics, University of Valencia, 46100 Valencia, Spain)

  • Alexander Torres Prieto

    (Epidemiologic Monitoring Office, Secretary of Health of the Department of Santander, Cl. 45 11-52 Bucaramanga, Colombia)

Abstract

The aim of this study is to estimate the parallel relative risk of Zika virus disease (ZVD) and dengue using spatio-temporal interaction effects models for one department and one city of Colombia during the 2015–2016 ZVD outbreak. We apply the integrated nested Laplace approximation (INLA) for parameter estimation, using the epidemiological week (EW) as a time measure. At the departmental level, the best model showed that the dengue or ZVD risk in one municipality was highly associated with risk in the same municipality during the preceding EWs, while at the city level, the final model selected established that the high risk of dengue or ZVD in one census sector was highly associated not only with its neighboring census sectors in the same EW, but also with its neighboring sectors in the preceding EW. The spatio-temporal models provided smoothed risk estimates, credible risk intervals, and estimation of the probability of high risk of dengue and ZVD by area and time period. We explore the intricacies of the modeling process and interpretation of the results, advocating for the use of spatio-temporal models of the relative risk of dengue and ZVD in order to generate highly valuable epidemiological information for public health decision making.

Suggested Citation

  • Daniel Adyro Martínez-Bello & Antonio López-Quílez & Alexander Torres Prieto, 2018. "Spatio-Temporal Modeling of Zika and Dengue Infections within Colombia," IJERPH, MDPI, vol. 15(7), pages 1-18, June.
  • Handle: RePEc:gam:jijerp:v:15:y:2018:i:7:p:1376-:d:155424
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/15/7/1376/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/15/7/1376/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mohamed F. Sallam & Chelsea Fizer & Andrew N. Pilant & Pai-Yei Whung, 2017. "Systematic Review: Land Cover, Meteorological, and Socioeconomic Determinants of Aedes Mosquito Habitat for Risk Mapping," IJERPH, MDPI, vol. 14(10), pages 1-15, October.
    2. Sair Arboleda & Nicolas Jaramillo-O. & A. Townsend Peterson, 2009. "Mapping Environmental Dimensions of Dengue Fever Transmission Risk in the Aburrá Valley, Colombia," IJERPH, MDPI, vol. 6(12), pages 1-16, December.
    3. Anna M. Stewart-Ibarra & Anita Hargrave & Avriel Diaz & Aileen Kenneson & David Madden & Moory M. Romero & Juan Pablo Molina & David Macias Saltos, 2017. "Psychological Distress and Zika, Dengue and Chikungunya Symptoms Following the 2016 Earthquake in Bahía de Caráquez, Ecuador," IJERPH, MDPI, vol. 14(12), pages 1-16, December.
    4. Håvard Rue & Sara Martino & Nicolas Chopin, 2009. "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(2), pages 319-392, April.
    5. Rachel Lowe & Christovam Barcellos & Patrícia Brasil & Oswaldo G. Cruz & Nildimar Alves Honório & Hannah Kuper & Marilia Sá Carvalho, 2018. "The Zika Virus Epidemic in Brazil: From Discovery to Future Implications," IJERPH, MDPI, vol. 15(1), pages 1-18, January.
    6. Gneiting, Tilmann & Raftery, Adrian E., 2007. "Strictly Proper Scoring Rules, Prediction, and Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 102, pages 359-378, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio López-Quílez, 2019. "Spatio-Temporal Analysis of Infectious Diseases," IJERPH, MDPI, vol. 16(4), pages 1-2, February.
    2. Chao Song & Yaode Wang & Xiu Yang & Yili Yang & Zhangying Tang & Xiuli Wang & Jay Pan, 2020. "Spatial and Temporal Impacts of Socioeconomic and Environmental Factors on Healthcare Resources: A County-Level Bayesian Local Spatiotemporal Regression Modeling Study of Hospital Beds in Southwest Ch," IJERPH, MDPI, vol. 17(16), pages 1-23, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Braulio-Gonzalo, Marta & Bovea, María D. & Jorge-Ortiz, Andrea & Juan, Pablo, 2021. "Which is the best-fit response variable for modelling the energy consumption of households? An analysis based on survey data," Energy, Elsevier, vol. 231(C).
    2. Gael M. Martin & David T. Frazier & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2023. "Bayesian Forecasting in the 21st Century: A Modern Review," Monash Econometrics and Business Statistics Working Papers 1/23, Monash University, Department of Econometrics and Business Statistics.
    3. Paige, John & Fuglstad, Geir-Arne & Riebler, Andrea & Wakefield, Jon, 2022. "Bayesian multiresolution modeling of georeferenced data: An extension of ‘LatticeKrig’," Computational Statistics & Data Analysis, Elsevier, vol. 173(C).
    4. Zhichao Li & Helen Gurgel & Nadine Dessay & Luojia Hu & Lei Xu & Peng Gong, 2020. "Semi-Supervised Text Classification Framework: An Overview of Dengue Landscape Factors and Satellite Earth Observation," IJERPH, MDPI, vol. 17(12), pages 1-29, June.
    5. Birgit Schrödle & Leonhard Held, 2011. "A primer on disease mapping and ecological regression using $${\texttt{INLA}}$$," Computational Statistics, Springer, vol. 26(2), pages 241-258, June.
    6. David Bolin & Vilhelm Verendel & Meta Berghauser Pont & Ioanna Stavroulaki & Oscar Ivarsson & Erik Håkansson, 2021. "Functional ANOVA modelling of pedestrian counts on streets in three European cities," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1176-1198, October.
    7. Matthew J. Heaton & Abhirup Datta & Andrew O. Finley & Reinhard Furrer & Joseph Guinness & Rajarshi Guhaniyogi & Florian Gerber & Robert B. Gramacy & Dorit Hammerling & Matthias Katzfuss & Finn Lindgr, 2019. "A Case Study Competition Among Methods for Analyzing Large Spatial Data," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 398-425, September.
    8. Luis A. Barboza & Julien Emile-Geay & Bo Li & Wan He, 2019. "Efficient Reconstructions of Common Era Climate via Integrated Nested Laplace Approximations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 535-554, September.
    9. John M. Humphreys & Robert B. Srygley & David H. Branson, 2022. "Geographic Variation in Migratory Grasshopper Recruitment under Projected Climate Change," Geographies, MDPI, vol. 2(1), pages 1-19, January.
    10. John M. Humphreys, 2022. "Amplification in Time and Dilution in Space: Partitioning Spatiotemporal Processes to Assess the Role of Avian-Host Phylodiversity in Shaping Eastern Equine Encephalitis Virus Distribution," Geographies, MDPI, vol. 2(3), pages 1-16, July.
    11. Luis A. Barboza & Shu Wei Chou Chen & Marcela Alfaro Córdoba & Eric J. Alfaro & Hugo G. Hidalgo, 2023. "Spatio‐temporal downscaling emulator for regional climate models," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.
    12. Eidsvik, Jo & Finley, Andrew O. & Banerjee, Sudipto & Rue, Håvard, 2012. "Approximate Bayesian inference for large spatial datasets using predictive process models," Computational Statistics & Data Analysis, Elsevier, vol. 56(6), pages 1362-1380.
    13. Martínez-Minaya, Joaquín & Conesa, David & Bakka, Haakon & Pennino, Maria Grazia, 2019. "Dealing with physical barriers in bottlenose dolphin (Tursiops truncatus) distribution," Ecological Modelling, Elsevier, vol. 406(C), pages 44-49.
    14. Silius M. Vandeskog & Sara Martino & Daniela Castro-Camilo & Håvard Rue, 2022. "Modelling Sub-daily Precipitation Extremes with the Blended Generalised Extreme Value Distribution," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 27(4), pages 598-621, December.
    15. Carlos Díaz-Avalos & Pablo Juan & Somnath Chaudhuri & Marc Sáez & Laura Serra, 2020. "Association between the New COVID-19 Cases and Air Pollution with Meteorological Elements in Nine Counties of New York State," IJERPH, MDPI, vol. 17(23), pages 1-18, December.
    16. Firoozeh Rivaz & Majid Jafari Khaledi, 2015. "Bayesian spatial prediction of skew and censored data via a hybrid algorithm," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(9), pages 1993-2009, September.
    17. Chen, Yewen & Chang, Xiaohui & Luo, Fangzhi & Huang, Hui, 2023. "Additive dynamic models for correcting numerical model outputs," Computational Statistics & Data Analysis, Elsevier, vol. 187(C).
    18. Naeimehossadat Asmarian & Seyyed Mohammad Taghi Ayatollahi & Zahra Sharafi & Najaf Zare, 2019. "Bayesian Spatial Joint Model for Disease Mapping of Zero-Inflated Data with R-INLA: A Simulation Study and an Application to Male Breast Cancer in Iran," IJERPH, MDPI, vol. 16(22), pages 1-13, November.
    19. Gael M. Martin & David T. Frazier & Worapree Maneesoonthorn & Ruben Loaiza-Maya & Florian Huber & Gary Koop & John Maheu & Didier Nibbering & Anastasios Panagiotelis, 2022. "Bayesian Forecasting in Economics and Finance: A Modern Review," Papers 2212.03471, arXiv.org, revised Jul 2023.
    20. Guhaniyogi, Rajarshi & Banerjee, Sudipto, 2019. "Multivariate spatial meta kriging," Statistics & Probability Letters, Elsevier, vol. 144(C), pages 3-8.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:15:y:2018:i:7:p:1376-:d:155424. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.