IDEAS home Printed from https://ideas.repec.org/a/gam/jftint/v12y2020i6p97-d367401.html
   My bibliography  Save this article

Input Selection Methods for Soft Sensor Design: A Survey

Author

Listed:
  • Francesco Curreri

    (Department of Mathematics and Computer Science, University of Palermo, 90123 Palermo, Italy)

  • Giacomo Fiumara

    (MIFT Department, University of Messina, 98166 Messina, Italy)

  • Maria Gabriella Xibilia

    (Department of Engineering, University of Messina, 98166 Messina, Italy)

Abstract

Soft Sensors (SSs) are inferential models used in many industrial fields. They allow for real-time estimation of hard-to-measure variables as a function of available data obtained from online sensors. SSs are generally built using industries historical databases through data-driven approaches. A critical issue in SS design concerns the selection of input variables, among those available in a candidate dataset. In the case of industrial processes, candidate inputs can reach great numbers, making the design computationally demanding and leading to poorly performing models. An input selection procedure is then necessary. Most used input selection approaches for SS design are addressed in this work and classified with their benefits and drawbacks to guide the designer through this step.

Suggested Citation

  • Francesco Curreri & Giacomo Fiumara & Maria Gabriella Xibilia, 2020. "Input Selection Methods for Soft Sensor Design: A Survey," Future Internet, MDPI, vol. 12(6), pages 1-24, June.
  • Handle: RePEc:gam:jftint:v:12:y:2020:i:6:p:97-:d:367401
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1999-5903/12/6/97/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1999-5903/12/6/97/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Michael E. Tipping & Christopher M. Bishop, 1999. "Probabilistic Principal Component Analysis," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 61(3), pages 611-622.
    2. Warren Torgerson, 1952. "Multidimensional scaling: I. Theory and method," Psychometrika, Springer;The Psychometric Society, vol. 17(4), pages 401-419, December.
    3. Bair, Eric & Hastie, Trevor & Paul, Debashis & Tibshirani, Robert, 2006. "Prediction by Supervised Principal Components," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 119-137, March.
    4. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    5. Dongfeng Li & Zhirui Li & Kai Sun, 2020. "Development of a Novel Soft Sensor with Long Short-Term Memory Network and Normalized Mutual Information Feature Selection," Mathematical Problems in Engineering, Hindawi, vol. 2020, pages 1-11, April.
    6. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    7. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang Zhu & Wang C.Y., 2010. "Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-33, June.
    2. Caroline Jardet & Baptiste Meunier, 2022. "Nowcasting world GDP growth with high‐frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1181-1200, September.
    3. Kawano, Shuichi & Fujisawa, Hironori & Takada, Toyoyuki & Shiroishi, Toshihiko, 2015. "Sparse principal component regression with adaptive loading," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 192-203.
    4. Wentao Qu & Xianchao Xiu & Huangyue Chen & Lingchen Kong, 2023. "A Survey on High-Dimensional Subspace Clustering," Mathematics, MDPI, vol. 11(2), pages 1-39, January.
    5. Hojin Yang & Hongtu Zhu & Joseph G. Ibrahim, 2018. "MILFM: Multiple index latent factor model based on high‐dimensional features," Biometrics, The International Biometric Society, vol. 74(3), pages 834-844, September.
    6. Luis A. Barboza & Julien Emile-Geay & Bo Li & Wan He, 2019. "Efficient Reconstructions of Common Era Climate via Integrated Nested Laplace Approximations," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 24(3), pages 535-554, September.
    7. Anshul Verma & Orazio Angelini & Tiziana Di Matteo, 2019. "A new set of cluster driven composite development indicators," Papers 1911.11226, arXiv.org, revised Mar 2020.
    8. Zemin Zheng & Jinchi Lv & Wei Lin, 2021. "Nonsparse Learning with Latent Variables," Operations Research, INFORMS, vol. 69(1), pages 346-359, January.
    9. Bai, Jushan & Ng, Serena, 2008. "Forecasting economic time series using targeted predictors," Journal of Econometrics, Elsevier, vol. 146(2), pages 304-317, October.
    10. Lore Zumeta-Olaskoaga & Maximilian Weigert & Jon Larruskain & Eder Bikandi & Igor Setuain & Josean Lekue & Helmut Küchenhoff & Dae-Jin Lee, 2023. "Prediction of sports injuries in football: a recurrent time-to-event approach using regularized Cox models," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 101-126, March.
    11. Shuichi Kawano, 2021. "Sparse principal component regression via singular value decomposition approach," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(3), pages 795-823, September.
    12. Davood Hajinezhad & Qingjiang Shi, 2018. "Alternating direction method of multipliers for a class of nonconvex bilinear optimization: convergence analysis and applications," Journal of Global Optimization, Springer, vol. 70(1), pages 261-288, January.
    13. Juan C. Laria & M. Carmen Aguilera-Morillo & Rosa E. Lillo, 2023. "Group linear algorithm with sparse principal decomposition: a variable selection and clustering method for generalized linear models," Statistical Papers, Springer, vol. 64(1), pages 227-253, February.
    14. Kawano, Shuichi & Fujisawa, Hironori & Takada, Toyoyuki & Shiroishi, Toshihiko, 2018. "Sparse principal component regression for generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 124(C), pages 180-196.
    15. Shen, Haipeng & Huang, Jianhua Z., 2008. "Sparse principal component analysis via regularized low rank matrix approximation," Journal of Multivariate Analysis, Elsevier, vol. 99(6), pages 1015-1034, July.
    16. Luo, Ruiyan & Qi, Xin, 2015. "Sparse wavelet regression with multiple predictive curves," Journal of Multivariate Analysis, Elsevier, vol. 134(C), pages 33-49.
    17. Hyonho Chun & Sündüz Keleş, 2010. "Sparse partial least squares regression for simultaneous dimension reduction and variable selection," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 72(1), pages 3-25, January.
    18. Li, Hong & Porth, Lysa & Tan, Ken Seng & Zhu, Wenjun, 2021. "Improved index insurance design and yield estimation using a dynamic factor forecasting approach," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 208-221.
    19. Ueki, Masao, 2021. "Testing conditional mean through regression model sequence using Yanai’s generalized coefficient of determination," Computational Statistics & Data Analysis, Elsevier, vol. 158(C).
    20. Randy Carter & Netsanet Michael, 2022. "Factor Analysis Regression for Predictive Modeling with High-Dimensional Data," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 20(1), pages 115-132, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jftint:v:12:y:2020:i:6:p:97-:d:367401. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.