IDEAS home Printed from https://ideas.repec.org/a/bla/biomet/v74y2018i3p834-844.html
   My bibliography  Save this article

MILFM: Multiple index latent factor model based on high‐dimensional features

Author

Listed:
  • Hojin Yang
  • Hongtu Zhu
  • Joseph G. Ibrahim

Abstract

The aim of this article is to develop a multiple‐index latent factor modeling (MILFM) framework to build an accurate prediction model for clinical outcomes based on a massive number of features. We develop a three‐stage estimation procedure to build the prediction model. MILFM uses an independent screening method to select a set of informative features, which may have a complex nonlinear relationship with the outcome variables. Moreover, we develop a latent factor model to project all informative predictors onto a small number of local subspaces, which lead to a few key features that capture reliable and informative covariate information. Finally, we fit the regularized empirical estimate to those key features in order to accurately predict clinical outcomes. We systematically investigate the theoretical properties of MILFM, such as risk bounds and selection consistency. Our simulation results and real data analysis show that MILFM outperforms many state‐of‐the‐art methods in terms of prediction accuracy.

Suggested Citation

  • Hojin Yang & Hongtu Zhu & Joseph G. Ibrahim, 2018. "MILFM: Multiple index latent factor model based on high‐dimensional features," Biometrics, The International Biometric Society, vol. 74(3), pages 834-844, September.
  • Handle: RePEc:bla:biomet:v:74:y:2018:i:3:p:834-844
    DOI: 10.1111/biom.12866
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/biom.12866
    Download Restriction: no

    File URL: https://libkey.io/10.1111/biom.12866?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Lexin Li, 2007. "Sparse sufficient dimension reduction," Biometrika, Biometrika Trust, vol. 94(3), pages 603-613.
    3. Liu, Yufeng & Zhang, Hao Helen & Wu, Yichao, 2011. "Hard or Soft Classification? Large-Margin Unified Machines," Journal of the American Statistical Association, American Statistical Association, vol. 106(493), pages 166-177.
    4. Zhou Yu & Liping Zhu & Heng Peng & Lixing Zhu, 2013. "Dimension reduction and predictor selection in semiparametric models," Biometrika, Biometrika Trust, vol. 100(3), pages 641-654.
    5. Jianqing Fan & Jinchi Lv, 2008. "Sure independence screening for ultrahigh dimensional feature space," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 70(5), pages 849-911, November.
    6. Xiangrong Yin & Haileab Hilafu, 2015. "Sequential sufficient dimension reduction for large p, small n problems," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 77(4), pages 879-892, September.
    7. Hui Zou & Trevor Hastie, 2005. "Addendum: Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(5), pages 768-768, November.
    8. Cook, R. Dennis & Ni, Liqiang, 2005. "Sufficient Dimension Reduction via Inverse Regression: A Minimum Discrepancy Approach," Journal of the American Statistical Association, American Statistical Association, vol. 100, pages 410-428, June.
    9. Bair, Eric & Hastie, Trevor & Paul, Debashis & Tibshirani, Robert, 2006. "Prediction by Supervised Principal Components," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 119-137, March.
    10. Hui Zou & Trevor Hastie, 2005. "Regularization and variable selection via the elastic net," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(2), pages 301-320, April.
    11. Yanyuan Ma & Liping Zhu, 2013. "A Review on Dimension Reduction," International Statistical Review, International Statistical Institute, vol. 81(1), pages 134-150, April.
    12. Qing Mai & Hui Zou, 2013. "The Kolmogorov filter for variable screening in high-dimensional binary classification," Biometrika, Biometrika Trust, vol. 100(1), pages 229-234.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Weng, Jiaying, 2022. "Fourier transform sparse inverse regression estimators for sufficient variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 168(C).
    2. Tan, Xin Lu, 2019. "Optimal estimation of slope vector in high-dimensional linear transformation models," Journal of Multivariate Analysis, Elsevier, vol. 169(C), pages 179-204.
    3. Zakariya Yahya Algamal & Muhammad Hisyam Lee, 2019. "A two-stage sparse logistic regression for optimal gene selection in high-dimensional microarray data classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 13(3), pages 753-771, September.
    4. Xiao, Zhen & Zhang, Qi, 2022. "Dimension reduction for block-missing data based on sparse sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
    5. Wei Sun & Lexin Li, 2012. "Multiple Loci Mapping via Model-free Variable Selection," Biometrics, The International Biometric Society, vol. 68(1), pages 12-22, March.
    6. Yuan, Qingcong & Chen, Xianyan & Ke, Chenlu & Yin, Xiangrong, 2022. "Independence index sufficient variable screening for categorical responses," Computational Statistics & Data Analysis, Elsevier, vol. 174(C).
    7. Wang Zhu & Wang C.Y., 2010. "Buckley-James Boosting for Survival Analysis with High-Dimensional Biomarker Data," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-33, June.
    8. Wang, Christina Dan & Chen, Zhao & Lian, Yimin & Chen, Min, 2022. "Asset selection based on high frequency Sharpe ratio," Journal of Econometrics, Elsevier, vol. 227(1), pages 168-188.
    9. Borup, Daniel & Christensen, Bent Jesper & Mühlbach, Nicolaj Søndergaard & Nielsen, Mikkel Slot, 2023. "Targeting predictors in random forest regression," International Journal of Forecasting, Elsevier, vol. 39(2), pages 841-868.
    10. Caroline Jardet & Baptiste Meunier, 2022. "Nowcasting world GDP growth with high‐frequency data," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(6), pages 1181-1200, September.
    11. Peter Bühlmann & Jacopo Mandozzi, 2014. "High-dimensional variable screening and bias in subsequent inference, with an empirical comparison," Computational Statistics, Springer, vol. 29(3), pages 407-430, June.
    12. Hung Hung & Su‐Yun Huang, 2019. "Sufficient dimension reduction via random‐partitions for the large‐p‐small‐n problem," Biometrics, The International Biometric Society, vol. 75(1), pages 245-255, March.
    13. Kawano, Shuichi & Fujisawa, Hironori & Takada, Toyoyuki & Shiroishi, Toshihiko, 2015. "Sparse principal component regression with adaptive loading," Computational Statistics & Data Analysis, Elsevier, vol. 89(C), pages 192-203.
    14. Loann David Denis Desboulets, 2018. "A Review on Variable Selection in Regression Analysis," Econometrics, MDPI, vol. 6(4), pages 1-27, November.
    15. Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022. "On LASSO for predictive regression," Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
    16. Jingxuan Luo & Lili Yue & Gaorong Li, 2023. "Overview of High-Dimensional Measurement Error Regression Models," Mathematics, MDPI, vol. 11(14), pages 1-22, July.
    17. Wang, Pei & Yin, Xiangrong & Yuan, Qingcong & Kryscio, Richard, 2021. "Feature filter for estimating central mean subspace and its sparse solution," Computational Statistics & Data Analysis, Elsevier, vol. 163(C).
    18. Lai, Peng & Song, Fengli & Chen, Kaiwen & Liu, Zhi, 2017. "Model free feature screening with dependent variable in ultrahigh dimensional binary classification," Statistics & Probability Letters, Elsevier, vol. 125(C), pages 141-148.
    19. Ricardo P. Masini & Marcelo C. Medeiros & Eduardo F. Mendes, 2023. "Machine learning advances for time series forecasting," Journal of Economic Surveys, Wiley Blackwell, vol. 37(1), pages 76-111, February.
    20. Chen, Shi & Härdle, Wolfgang Karl & López Cabrera, Brenda, 2018. "Regularization Approach for Network Modeling of German Energy Market," IRTG 1792 Discussion Papers 2018-017, Humboldt University of Berlin, International Research Training Group 1792 "High Dimensional Nonstationary Time Series".

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:biomet:v:74:y:2018:i:3:p:834-844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0006-341X .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.