IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v9y2016i3p171-d65218.html
   My bibliography  Save this article

Design and Application of a Power Unit to Use Plug-In Electric Vehicles as an Uninterruptible Power Supply

Author

Listed:
  • Gorkem Sen

    (Department of Electronics and Automation, Ipsala Vocational School, Trakya University, Ipsala, Edirne 22400, Turkey)

  • Ali Rifat Boynuegri

    (Department of Electrical Engineering, Faculty of Electric-Electronics, Yildiz Technical University Davutpasa Campus, Esenler, Istanbul 34220, Turkey)

  • Mehmet Uzunoglu

    (Department of Electrical Engineering, Faculty of Electric-Electronics, Yildiz Technical University Davutpasa Campus, Esenler, Istanbul 34220, Turkey)

  • Ozan Erdinc

    (Department of Electrical Engineering, Faculty of Electric-Electronics, Yildiz Technical University Davutpasa Campus, Esenler, Istanbul 34220, Turkey
    Instituto de Engenharia de Sistemas e Computadores—Investigação e Desenvolvimento (INESC-ID), Inst. Super. Tecn., University of Lisbon, Av. Rovisco Pais, 1, Lisbon 1049-001, Portugal)

  • João P. S. Catalão

    (Instituto de Engenharia de Sistemas e Computadores—Investigação e Desenvolvimento (INESC-ID), Inst. Super. Tecn., University of Lisbon, Av. Rovisco Pais, 1, Lisbon 1049-001, Portugal
    Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, Porto 4200-465, Portugal
    Department of Electromechanical Engineering, University of Beira Interior, R. Fonte do Lameiro, Covilhã 6201-001, Portugal)

Abstract

Grid-enabled vehicles (GEVs) such as plug-in electric vehicles present environmental and energy sustainability advantages compared to conventional vehicles. GEV runs solely on power generated by its own battery group, which supplies power to its electric motor. This battery group can be charged from external electric sources. Nowadays, the interaction of GEV with the power grid is unidirectional by the charging process. However, GEV can be operated bi-directionally by modifying its power unit. In such operating conditions, GEV can operate as an uninterruptible power supply (UPS) and satisfy a portion or the total energy demand of the consumption center independent from utility grid, which is known as vehicle-to-home (V2H). In this paper, a power unit is developed for GEVs in the laboratory to conduct simulation and experimental studies to test the performance of GEVs as a UPS unit in V2H mode at the time of need. The activation and deactivation of the power unit and islanding protection unit are examined when energy is interrupted.

Suggested Citation

  • Gorkem Sen & Ali Rifat Boynuegri & Mehmet Uzunoglu & Ozan Erdinc & João P. S. Catalão, 2016. "Design and Application of a Power Unit to Use Plug-In Electric Vehicles as an Uninterruptible Power Supply," Energies, MDPI, vol. 9(3), pages 1-17, March.
  • Handle: RePEc:gam:jeners:v:9:y:2016:i:3:p:171-:d:65218
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/9/3/171/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/9/3/171/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Bizon, Nicu, 2013. "Energy efficiency for the multiport power converters architectures of series and parallel hybrid power source type used in plug-in/V2G fuel cell vehicles," Applied Energy, Elsevier, vol. 102(C), pages 726-734.
    2. Boynuegri, A.R. & Uzunoglu, M. & Erdinc, O. & Gokalp, E., 2014. "A new perspective in grid connection of electric vehicles: Different operating modes for elimination of energy quality problems," Applied Energy, Elsevier, vol. 132(C), pages 435-451.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    2. Jesús Rodríguez-Molina & José-Fernán Martínez & Pedro Castillejo, 2016. "A Study on Applicability of Distributed Energy Generation, Storage and Consumption within Small Scale Facilities," Energies, MDPI, vol. 9(9), pages 1-35, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taghizadeh, Seyedfoad & Hossain, M.J. & Lu, Junwei & Water, Wayne, 2018. "A unified multi-functional on-board EV charger for power-quality control in household networks," Applied Energy, Elsevier, vol. 215(C), pages 186-201.
    2. Yagcitekin, Bunyamin & Uzunoglu, Mehmet, 2016. "A double-layer smart charging strategy of electric vehicles taking routing and charge scheduling into account," Applied Energy, Elsevier, vol. 167(C), pages 407-419.
    3. Yang, Ting & Pen, Haibo & Wang, Dan & Wang, Zhaoxia, 2016. "Harmonic analysis in integrated energy system based on compressed sensing," Applied Energy, Elsevier, vol. 165(C), pages 583-591.
    4. Nicu Bizon & Alin Gheorghita Mazare & Laurentiu Mihai Ionescu & Phatiphat Thounthong & Erol Kurt & Mihai Oproescu & Gheorghe Serban & Ioan Lita, 2019. "Better Fuel Economy by Optimizing Airflow of the Fuel Cell Hybrid Power Systems Using Fuel Flow-Based Load-Following Control," Energies, MDPI, vol. 12(14), pages 1-17, July.
    5. Yong, Jia Ying & Ramachandaramurthy, Vigna K. & Tan, Kang Miao & Mithulananthan, N., 2015. "A review on the state-of-the-art technologies of electric vehicle, its impacts and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 365-385.
    6. Heydarian-Forushani, E. & Golshan, M.E.H. & Shafie-khah, M., 2016. "Flexible interaction of plug-in electric vehicle parking lots for efficient wind integration," Applied Energy, Elsevier, vol. 179(C), pages 338-349.
    7. Maria-Simona Răboacă & Irina Băncescu & Vasile Preda & Nicu Bizon, 2020. "An Optimization Model for the Temporary Locations of Mobile Charging Stations," Mathematics, MDPI, vol. 8(3), pages 1-20, March.
    8. Hou, Cong & Ouyang, Minggao & Xu, Liangfei & Wang, Hewu, 2014. "Approximate Pontryagin’s minimum principle applied to the energy management of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 115(C), pages 174-189.
    9. Ioan Aschilean & Mihai Varlam & Mihai Culcer & Mariana Iliescu & Mircea Raceanu & Adrian Enache & Maria Simona Raboaca & Gabriel Rasoi & Constantin Filote, 2018. "Hybrid Electric Powertrain with Fuel Cells for a Series Vehicle," Energies, MDPI, vol. 11(5), pages 1-12, May.
    10. Veneri, Ottorino & Capasso, Clemente & Iannuzzi, Diego, 2016. "Experimental evaluation of DC charging architecture for fully-electrified low-power two-wheeler," Applied Energy, Elsevier, vol. 162(C), pages 1428-1438.
    11. Colak, Ilhami & Fulli, Gianluca & Sagiroglu, Seref & Yesilbudak, Mehmet & Covrig, Catalin-Felix, 2015. "Smart grid projects in Europe: Current status, maturity and future scenarios," Applied Energy, Elsevier, vol. 152(C), pages 58-70.
    12. Vitor Monteiro & Jose A. Afonso & Joao C. Ferreira & Joao L. Afonso, 2018. "Vehicle Electrification: New Challenges and Opportunities for Smart Grids," Energies, MDPI, vol. 12(1), pages 1-20, December.
    13. Bizon, Nicu, 2018. "Optimal operation of fuel cell/wind turbine hybrid power system under turbulent wind and variable load," Applied Energy, Elsevier, vol. 212(C), pages 196-209.
    14. Lee, Sang C. & Kwon, Osung & Thomas, Sobi & Park, Sam & Choi, Gyeung-Ho, 2014. "Graphical and mathematical analysis of fuel cell/battery passive hybridization with K factors," Applied Energy, Elsevier, vol. 114(C), pages 135-145.
    15. David Lumbreras & Eduardo Gálvez & Alfonso Collado & Jordi Zaragoza, 2020. "Trends in Power Quality, Harmonic Mitigation and Standards for Light and Heavy Industries: A Review," Energies, MDPI, vol. 13(21), pages 1-24, November.
    16. Bizon, Nicu, 2019. "Hybrid power sources (HPSs) for space applications: Analysis of PEMFC/Battery/SMES HPS under unknown load containing pulses," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 14-37.
    17. Asaad Mohammad & Ramon Zamora & Tek Tjing Lie, 2020. "Integration of Electric Vehicles in the Distribution Network: A Review of PV Based Electric Vehicle Modelling," Energies, MDPI, vol. 13(17), pages 1-20, September.
    18. Shao, Liuguo & Kou, Wenwen & Zhang, Hua, 2022. "The evolution of the global cobalt and lithium trade pattern and the impacts of the low-cobalt technology of lithium batteries based on multiplex network," Resources Policy, Elsevier, vol. 76(C).
    19. Shafie-khah, M. & Heydarian-Forushani, E. & Golshan, M.E.H. & Siano, P. & Moghaddam, M.P. & Sheikh-El-Eslami, M.K. & Catalão, J.P.S., 2016. "Optimal trading of plug-in electric vehicle aggregation agents in a market environment for sustainability," Applied Energy, Elsevier, vol. 162(C), pages 601-612.
    20. Shareef, Hussain & Islam, Md. Mainul & Mohamed, Azah, 2016. "A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 403-420.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:9:y:2016:i:3:p:171-:d:65218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.