IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i9p9688-9718d55442.html
   My bibliography  Save this article

Investigation of Electromagnetic, Thermal and Mechanical Characteristics of a Five-Phase Dual-Rotor Permanent-Magnet Synchronous Motor

Author

Listed:
  • Jing Zhao

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

  • Wei Liu

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

  • Bin Li

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

  • Xiangdong Liu

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

  • Congzhe Gao

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

  • Zhongxin Gu

    (School of Automation, Beijing Institute of Technology, Beijing 100081, China)

Abstract

This paper investigates of a kind of five-phase dual-rotor permanent-magnet synchronous motor (DRPMSM), which contains dual rotors and a single stator. This kind of motor has the potential advantages of high power density, high reliability and high efficiency, which make it more appropriate for using in electric vehicles (EVs). In order to evaluate the most suitable power level for this kind of structure, the electromagnetic, the thermal and the mechanical characteristics are investigated in this paper. The length to diameter ratio of motors is researched to obtain the highest power density and then the optimum ratio is obtained. Based on the optimum ratio, the thermal characteristics are researched under natural condition and forced-air cooling condition with different wind speeds. In addition, the mechanical characteristics are analyzed under no-load and different loads conditions, respectively. All of the results are analyzed by two-dimension (2-D) and three-dimension (3-D) finite element method (FEM) simulation, which provide a good reference to select suitable power level for this kind of motor structure. Finally, a DRPMSM prototype is manufactured and tested. The experimental results effectively verify the FEM results.

Suggested Citation

  • Jing Zhao & Wei Liu & Bin Li & Xiangdong Liu & Congzhe Gao & Zhongxin Gu, 2015. "Investigation of Electromagnetic, Thermal and Mechanical Characteristics of a Five-Phase Dual-Rotor Permanent-Magnet Synchronous Motor," Energies, MDPI, vol. 8(9), pages 1-31, September.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:9:p:9688-9718:d:55442
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/9/9688/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/9/9688/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sung Chul Kim, 2013. "Thermal Performance of Motor and Inverter in an Integrated Starter Generator System for a Hybrid Electric Vehicle," Energies, MDPI, vol. 6(11), pages 1-18, November.
    2. Yumeng Li & Jing Zhao & Zhen Chen & Xiangdong Liu, 2014. "Investigation of a Five-Phase Dual-Rotor Permanent Magnet Synchronous Motor Used for Electric Vehicles," Energies, MDPI, vol. 7(6), pages 1-30, June.
    3. Jingang Bai & Yong Liu & Yi Sui & Chengde Tong & Quanbin Zhao & Jiawei Zhang, 2014. "Investigation of the Cooling and Thermal-Measuring System of a Compound-Structure Permanent-Magnet Synchronous Machine," Energies, MDPI, vol. 7(3), pages 1-34, March.
    4. Heng Chen & Yungang Wang & Qinxin Zhao & Haidong Ma & Yuxin Li & Zhongya Chen, 2014. "Experimental Investigation of Heat Transfer and Pressure Drop Characteristics of H-type Finned Tube Banks," Energies, MDPI, vol. 7(11), pages 1-11, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peixin Liang & Yulong Pei & Feng Chai & Kui Zhao, 2016. "Analytical Calculation of D - and Q -axis Inductance for Interior Permanent Magnet Motors Based on Winding Function Theory," Energies, MDPI, vol. 9(8), pages 1-11, July.
    2. Yu-Xi Liu & Li-Yi Li & Ji-Wei Cao & Qin-He Gao & Zhi-Yin Sun & Jiang-Peng Zhang, 2018. "The Optimization Design of Short-Term High-Overload Permanent Magnet Motors Considering the Nonlinear Saturation," Energies, MDPI, vol. 11(12), pages 1-20, November.
    3. Borzou Yousefi & Soodabeh Soleymani & Babak Mozafari & Seid Asghar Gholamian, 2017. "Speed Control of Matrix Converter-Fed Five-Phase Permanent Magnet Synchronous Motors under Unbalanced Voltages," Energies, MDPI, vol. 10(10), pages 1-21, September.
    4. Lei Chen & Yulong Pei & Feng Chai & Shukang Cheng, 2016. "Investigation of a Novel Mechanical to Thermal Energy Converter Based on the Inverse Problem of Electric Machines," Energies, MDPI, vol. 9(7), pages 1-19, July.
    5. Yi Li & Feng Chai & Zaixin Song & Zongyang Li, 2017. "Analysis of Vibrations in Interior Permanent Magnet Synchronous Motors Considering Air-Gap Deformation," Energies, MDPI, vol. 10(9), pages 1-18, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moo-Yeon Lee & Dong Hyun Lim & Sung Chul Kim, 2015. "Evaluation of the Effect of Operating Parameters on Thermal Performance of an Integrated Starter Generator in Hybrid Electric Vehicles," Energies, MDPI, vol. 8(8), pages 1-19, August.
    2. Qingsong Wang & Shuangxia Niu, 2015. "Electromagnetic Design and Analysis of a Novel Fault-Tolerant Flux-Modulated Memory Machine," Energies, MDPI, vol. 8(8), pages 1-17, August.
    3. Pradhyumn Bhale & Mrinal Kaushik & Jane-Sunn Liaw & Chi-Chuan Wang, 2019. "Airside Performance of H-Type Finned Tube Banks with Surface Modifications," Energies, MDPI, vol. 12(4), pages 1-16, February.
    4. Xiaocheng Du & Weiteng Li & Xirong Zhang & Jingrong Chen & Tingyu Chen & Dong Yang, 2022. "Experimental Research on the Flow and Heat Transfer Characteristics of Subcritical and Supercritical Water in the Vertical Upward Smooth and Rifled Tubes," Energies, MDPI, vol. 15(21), pages 1-22, October.
    5. Rajesh Ravi & Senthilkumar Pachamuthu, 2018. "Design and Development of Innovative Protracted-Finned Counter Flow Heat Exchanger (PFCHE) for an Engine WHR and Its Impact on Exhaust Emissions," Energies, MDPI, vol. 11(10), pages 1-19, October.
    6. Ali Sadeghianjahromi & Saeid Kheradmand & Hossain Nemati & Jane-Sunn Liaw & Chi-Chuan Wang, 2018. "Compound Heat Transfer Enhancement of Wavy Fin-and-Tube Heat Exchangers through Boundary Layer Restarting and Swirled Flow," Energies, MDPI, vol. 11(8), pages 1-19, July.
    7. Wang, Jingyi & Hua, Jing & Fu, Lin & Wang, Zhe & Zhang, Shigang, 2019. "A theoretical fundamental investigation on boilers equipped with vapor-pump system for Flue-Gas Heat and Moisture Recovery," Energy, Elsevier, vol. 171(C), pages 956-970.
    8. Jing Zhao & Xu Gao & Bin Li & Xiangdong Liu & Xing Guan, 2015. "Open-Phase Fault Tolerance Techniques of Five-Phase Dual-Rotor Permanent Magnet Synchronous Motor," Energies, MDPI, vol. 8(11), pages 1-29, November.
    9. Xing Liu & Jinhua Du & Deliang Liang, 2016. "Analysis and Speed Ripple Mitigation of a Space Vector Pulse Width Modulation-Based Permanent Magnet Synchronous Motor with a Particle Swarm Optimization Algorithm," Energies, MDPI, vol. 9(11), pages 1-15, November.
    10. Jingang Yang & Yaohua Zhao & Aoxue Chen & Zhenhua Quan, 2019. "Thermal Performance of a Low-Temperature Heat Exchanger Using a Micro Heat Pipe Array," Energies, MDPI, vol. 12(4), pages 1-16, February.
    11. Peixin Liang & Yulong Pei & Feng Chai & Kui Zhao, 2016. "Analytical Calculation of D - and Q -axis Inductance for Interior Permanent Magnet Motors Based on Winding Function Theory," Energies, MDPI, vol. 9(8), pages 1-11, July.
    12. Seok Min Choi & Jun Su Park & Ho-Seong Sohn & Seon Ho Kim & Hyung Hee Cho, 2016. "Thermal Characteristics of Tube Bundles in Ultra-Supercritical Boilers," Energies, MDPI, vol. 9(10), pages 1-14, September.
    13. Mladen Bošnjaković & Robert Santa & Marko Katinić, 2023. "Experimental Testing of a Water-to-Water Heat Pump with and without IHX by Using Refrigerants R1234yf and R1234ze(E)," Sustainability, MDPI, vol. 15(11), pages 1-28, May.
    14. Xuan Wu & Hui Wang & Shoudao Huang & Keyuan Huang & Li Wang, 2015. "Sensorless Speed Control with Initial Rotor Position Estimation for Surface Mounted Permanent Magnet Synchronous Motor Drive in Electric Vehicles," Energies, MDPI, vol. 8(10), pages 1-17, October.
    15. Shehryar Ishaque & Man-Hoe Kim, 2019. "Seasonal Performance Investigation for Residential Heat Pump System with Different Outdoor Heat Exchanger Designs," Energies, MDPI, vol. 12(24), pages 1-22, December.
    16. Bin Yu & Shukuan Zhang & Jidong Yan & Luming Cheng & Ping Zheng, 2015. "Thermal Analysis of a Novel Cylindrical Transverse-Flux Permanent-Magnet Linear Machine," Energies, MDPI, vol. 8(8), pages 1-23, July.
    17. Jing Zhao & Zhongxin Gu & Bin Li & Xiangdong Liu & Xiaobei Li & Zhen Chen, 2015. "Research on the Torque and Back EMF Performance of a High Speed PMSM Used for Flywheel Energy Storage," Energies, MDPI, vol. 8(4), pages 1-22, April.
    18. Dewei Tang & Hong Xiao & Fanrui Kong & Zongquan Deng & Shengyuan Jiang & Qiquan Quan, 2017. "Thermal Analysis of the Driving Component Based on the Thermal Network Method in a Lunar Drilling System and Experimental Verification," Energies, MDPI, vol. 10(3), pages 1-17, March.
    19. Colmenar-Santos, Antonio & Molina-Ibáñez, Enrique-Luis & Rosales-Asensio, Enrique & López-Rey, África, 2018. "Technical approach for the inclusion of superconducting magnetic energy storage in a smart city," Energy, Elsevier, vol. 158(C), pages 1080-1091.
    20. Chengde Tong & Zhiyi Song & Jingang Bai & Jiaqi Liu & Ping Zheng, 2016. "Analytical Investigation of the Magnetic-Field Distribution in an Axial Magnetic-Field-Modulated Brushless Double-Rotor Machine," Energies, MDPI, vol. 9(8), pages 1-23, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:9:p:9688-9718:d:55442. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.