IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i6p4839-4852d50146.html
   My bibliography  Save this article

Protection Principle for a DC Distribution System with a Resistive Superconductive Fault Current Limiter

Author

Listed:
  • Shimin Xue

    (The Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Feng Gao

    (The Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Wenpeng Sun

    (The Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

  • Botong Li

    (The Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China)

Abstract

A DC distribution system, which is suitable for access to distributed power generation and DC loads, is one of the development directions in power systems. Furthermore, it could greatly improve the energy efficiency and reduce the loss of power transportation. The huge short circuit current is always a great threat to the safety of the components, especially the capacitors and diodes. A resistive superconductive fault current limiter (SFCL), which could respond quickly once a fault happens and limit the fault current to a relatively low level, becomes a good solution to this problem. In this paper, the operational principle of the resistive SFCL is introduced first, and then, the DC short-circuit fault characteristic of the DC distribution system with the SFCL is analyzed and the effectiveness of the SFCL verified. In order to realize the selectivity of the protection in the DC distribution system with SFCL, a new transient current protection principle based on I p (the peak value of the current) and t p (the transient time that the current takes to reach its peak value) is proposed. Finally, a model of a 10-kV DC distribution system with an SFCL is established and simulated in PSCAD/METDC. Simulation results have demonstrated the validity of the analysis and protection principle.

Suggested Citation

  • Shimin Xue & Feng Gao & Wenpeng Sun & Botong Li, 2015. "Protection Principle for a DC Distribution System with a Resistive Superconductive Fault Current Limiter," Energies, MDPI, vol. 8(6), pages 1-14, May.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:6:p:4839-4852:d:50146
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/6/4839/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/6/4839/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adel A. Abou El-Ela & Ragab A. El-Sehiemy & Abdullah M. Shaheen & Aya R. Ellien, 2022. "Review on Active Distribution Networks with Fault Current Limiters and Renewable Energy Resources," Energies, MDPI, vol. 15(20), pages 1-30, October.
    2. Saeed Zaman Jamali & Syed Basit Ali Bukhari & Muhammad Omer Khan & Muhammad Mehdi & Chul-Ho Noh & Gi-Hyeon Gwon & Chul-Hwan Kim, 2018. "Protection Scheme of a Last Mile Active LVDC Distribution Network with Reclosing Option," Energies, MDPI, vol. 11(5), pages 1-20, April.
    3. Md Shafiul Alam & Mohammad Ali Yousef Abido & Ibrahim El-Amin, 2018. "Fault Current Limiters in Power Systems: A Comprehensive Review," Energies, MDPI, vol. 11(5), pages 1-24, April.
    4. Liangliang Wei & Baichao Chen & Yushun Liu & Cuihua Tian & Jiaxin Yuan & Yuxin Bu & Tianan Zhu, 2018. "Performance Investigation and Optimization of a Novel Hybrid Saturated-Core Fault-Current Limiter Considering the Leakage Effect," Energies, MDPI, vol. 11(1), pages 1-17, January.
    5. Lei Chen & Hongkun Chen & Jun Yang & Yanjuan Yu & Kaiwei Zhen & Yang Liu & Li Ren, 2017. "Coordinated Control of Superconducting Fault Current Limiter and Superconducting Magnetic Energy Storage for Transient Performance Enhancement of Grid-Connected Photovoltaic Generation System," Energies, MDPI, vol. 10(1), pages 1-23, January.
    6. Lei Chen & Xiude Tu & Hongkun Chen & Jun Yang & Yayi Wu & Xin Shu & Li Ren, 2016. "Technical Evaluation of Superconducting Fault Current Limiters Used in a Micro-Grid by Considering the Fault Characteristics of Distributed Generation, Energy Storage and Power Loads," Energies, MDPI, vol. 9(10), pages 1-21, September.
    7. Haocong Shen & Fei Mei & Jianyong Zheng & Haoyuan Sha & Changjia She, 2018. "Three-Phase Saturated-Core Fault Current Limiter," Energies, MDPI, vol. 11(12), pages 1-18, December.
    8. Yu Zeng & Guibin Zou & Xiuyan Wei & Chenjun Sun & Lingtong Jiang, 2018. "A Novel Protection and Location Scheme for Pole-to-Pole Fault in MMC-MVDC Distribution Grid," Energies, MDPI, vol. 11(8), pages 1-17, August.
    9. Paul Stewart & Chris Bingham, 2016. "Electrical Power and Energy Systems for Transportation Applications," Energies, MDPI, vol. 9(7), pages 1-3, July.
    10. Cheng Lv & Xiaodong Zheng & Nengling Tai & Shi Chen, 2018. "Single-Ended Protection Scheme for VSC-Based DC Microgrid Lines," Energies, MDPI, vol. 11(6), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:6:p:4839-4852:d:50146. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.