IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v7y2014i2p1076-1094d33310.html
   My bibliography  Save this article

Development and Improvement of an Intelligent Cable Monitoring System for Underground Distribution Networks Using Distributed Temperature Sensing

Author

Listed:
  • Jintae Cho

    (Korea Electric Power Corporation Research Institute (KEPRI), Daejeon 305-760, Korea)

  • Jae-Han Kim

    (Korea Electric Power Corporation Research Institute (KEPRI), Daejeon 305-760, Korea)

  • Hak-Ju Lee

    (Korea Electric Power Corporation Research Institute (KEPRI), Daejeon 305-760, Korea)

  • Ju-Yong Kim

    (Korea Electric Power Corporation Research Institute (KEPRI), Daejeon 305-760, Korea)

  • Il-Keun Song

    (Korea Electric Power Corporation Research Institute (KEPRI), Daejeon 305-760, Korea)

  • Joon-Ho Choi

    (Department of Electrical Engineering, Chonnam National University, Gwangju 500-757, Korea)

Abstract

With power systems switching to smart grids, real-time and on-line monitoring technologies for underground distribution power cables have become a priority. Most distribution components have been developed with self-diagnostic sensors to realize self-healing, one of the smart grid functions in a distribution network. Nonetheless, implementing a real-time and on-line monitoring system for underground distribution cables has been difficult because of high cost and low sensitivity. Nowadays, optical fiber composite power cables (OFCPCs) are being considered for communication and power delivery to cope with the increasing communication load in a distribution network. Therefore, the application of distributed temperature sensing (DTS) technology on OFCPCs used as underground distribution lines is studied for the real-time and on-line monitoring of the underground distribution power cables. Faults can be reduced and operating ampacity of the underground distribution system can be increased. This paper presents the development and improvement of an intelligent cable monitoring system for the underground distribution power system, using DTS technology and OFCPCs as the underground distribution lines in the field.

Suggested Citation

  • Jintae Cho & Jae-Han Kim & Hak-Ju Lee & Ju-Yong Kim & Il-Keun Song & Joon-Ho Choi, 2014. "Development and Improvement of an Intelligent Cable Monitoring System for Underground Distribution Networks Using Distributed Temperature Sensing," Energies, MDPI, vol. 7(2), pages 1-19, February.
  • Handle: RePEc:gam:jeners:v:7:y:2014:i:2:p:1076-1094:d:33310
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/7/2/1076/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/7/2/1076/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan Yang & Kai Liu & Peng Cheng & Shaohua Wang & Xiaoyu Wang & Bing Gao & Yalin Fang & Rong Xia & Irfan Ullah, 2016. "The Coupling Fields Characteristics of Cable Joints and Application in the Evaluation of Crimping Process Defects," Energies, MDPI, vol. 9(11), pages 1-19, November.
    2. Alberto Arroyo & Pablo Castro & Raquel Martinez & Mario Manana & Alfredo Madrazo & Ramón Lecuna & Antonio Gonzalez, 2015. "Comparison between IEEE and CIGRE Thermal Behaviour Standards and Measured Temperature on a 132-kV Overhead Power Line," Energies, MDPI, vol. 8(12), pages 1-12, December.
    3. Raquel Martinez & Mario Manana & Alberto Arroyo & Sergio Bustamante & Alberto Laso & Pablo Castro & Rafael Minguez, 2021. "Dynamic Rating Management of Overhead Transmission Lines Operating under Multiple Weather Conditions," Energies, MDPI, vol. 14(4), pages 1-21, February.
    4. Lin Yang & Weihao Qiu & Jichao Huang & Yanpeng Hao & Mingli Fu & Shuai Hou & Licheng Li, 2018. "Comparison of Conductor-Temperature Calculations Based on Different Radial-Position-Temperature Detections for High-Voltage Power Cable," Energies, MDPI, vol. 11(1), pages 1-17, January.
    5. Phillips, Tyler & DeLeon, Rey & Senocak, Inanc, 2017. "Dynamic rating of overhead transmission lines over complex terrain using a large-eddy simulation paradigm," Renewable Energy, Elsevier, vol. 108(C), pages 380-389.
    6. Qing Yang & Bo Zhang & Jiaquan Ran & Song Chen & Yanxiao He & Jian Sun, 2017. "Measurement of Line-to-Ground Capacitance in Distribution Network Considering Magnetizing Impedance’s Frequency Characteristic," Energies, MDPI, vol. 10(4), pages 1-14, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:7:y:2014:i:2:p:1076-1094:d:33310. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.