IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v17y2024i5p999-d1342484.html
   My bibliography  Save this article

Automatic Extension of a Semi-Detailed Synthetic Fuel Reaction Mechanism

Author

Listed:
  • Marleen Schmidt

    (German Aerospace Center (DLR), Institute of Combustion Technology, 70569 Stuttgart, Germany)

  • Celina Anne Kathrin Eberl

    (German Aerospace Center (DLR), Institute of Combustion Technology, 70569 Stuttgart, Germany)

  • Sascha Jacobs

    (German Aerospace Center (DLR), Institute of Combustion Technology, 70569 Stuttgart, Germany)

  • Torsten Methling

    (German Aerospace Center (DLR), Institute of Combustion Technology, 70569 Stuttgart, Germany)

  • Andreas Huber

    (German Aerospace Center (DLR), Institute of Combustion Technology, 70569 Stuttgart, Germany)

  • Markus Köhler

    (German Aerospace Center (DLR), Institute of Combustion Technology, 70569 Stuttgart, Germany)

Abstract

To identify promising sustainable fuels, e.g., to select novel synthetic fuels with the greatest impact on minimizing global warming, new methods for rapid and economical technical fuel assessment are urgently needed. Here, numerical models that are capable of predicting technical key data quickly and without experimental setup are necessary. One method is the use of chemical kinetic models, which are able to predict the technical key parameters related to combustion behavior. For a rapid technical fuel assessment, these chemical kinetic models need to be validated for new fuel components and for different temperature and pressure ranges. This work presents a new approach to extend the existing semi-detailed chemical kinetic models. For the application of the approach, the semi-detailed reaction mechanism DLR Concise was selected and extended for the low temperature combustion modeling of n-heptane and isooctane. The open-source software reaction mechanism generator (RMG) was used for this extension. Furthermore, an optimization of the merged chemical kinetic model with the linear transformation model (linTM) was conducted in order to improve the reproducibility of ignition delay times. The improvement of the predictive performance of ignition delay times at low temperatures for both species was successfully demonstrated. Therefore, this approach can be used to quickly add new species or reaction pathways to an existing semi-detailed reaction mechanism to enable a model-based technical fuel assessment for the early identification of promising fuels.

Suggested Citation

  • Marleen Schmidt & Celina Anne Kathrin Eberl & Sascha Jacobs & Torsten Methling & Andreas Huber & Markus Köhler, 2024. "Automatic Extension of a Semi-Detailed Synthetic Fuel Reaction Mechanism," Energies, MDPI, vol. 17(5), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:999-:d:1342484
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/17/5/999/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/17/5/999/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Drünert, Sebastian & Neuling, Ulf & Zitscher, Tjerk & Kaltschmitt, Martin, 2020. "Power-to-Liquid fuels for aviation – Processes, resources and supply potential under German conditions," Applied Energy, Elsevier, vol. 277(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zoltán Csedő & Máté Zavarkó & Balázs Vaszkun & Sára Koczkás, 2021. "Hydrogen Economy Development Opportunities by Inter-Organizational Digital Knowledge Networks," Sustainability, MDPI, vol. 13(16), pages 1-26, August.
    2. Vishal Ram & Surender Reddy Salkuti, 2023. "An Overview of Major Synthetic Fuels," Energies, MDPI, vol. 16(6), pages 1-35, March.
    3. Jenny Trinh & Fumi Harahap & Anton Fagerström & Julia Hansson, 2021. "What Are the Policy Impacts on Renewable Jet Fuel in Sweden?," Energies, MDPI, vol. 14(21), pages 1-30, November.
    4. Eduardo Cabrera & João M. Melo de Sousa, 2022. "Use of Sustainable Fuels in Aviation—A Review," Energies, MDPI, vol. 15(7), pages 1-23, March.
    5. Gábor Pörzse & Zoltán Csedő & Máté Zavarkó, 2021. "Disruption Potential Assessment of the Power-to-Methane Technology," Energies, MDPI, vol. 14(8), pages 1-21, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:17:y:2024:i:5:p:999-:d:1342484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.