IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i7p3104-d1110523.html
   My bibliography  Save this article

Performance Study on an Electrocaloric Heat Pump Based on Ga-Based Liquid Metal

Author

Listed:
  • Panpan Song

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
    State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China)

  • Yawei Zhu

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Zhongyan An

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Mingshan Wei

    (School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China)

  • Xiaoxia Sun

    (China North Vehicle Research Institute, Beijing 100072, China)

  • Yangjun Zhang

    (State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China)

Abstract

A solid-state heat pump using the electrocaloric effect (ECE) provides a new idea for the future development of heat pumps. However, most of the electrocaloric (EC) heat pumps presented in the literature are low in efficiency and use at least one moving part, which significantly reduces the reliability of the heat pump and adds to its complexities. In this context, combining the positive and negative ECEs, we proposed a plate-laminar non-mobile EC heat pump adopting Gallium-based liquid metal as an intermediate medium to guarantee highly efficient heat transfer. Numerical simulation in COMSOL Multiphysics has been performed to investigate the correlation between different operating parameters and the performance of the EC heat pump. Changing the temperature span only, a COP of 8.13 and a UVHP of 746.1 W · d m − 3 were obtained at a temperature span of 7 K. It was also found that the UVHP increased by 28.45% and COP increased by 25.46% after adding one layer of EC material. The electric-induced quantity of heat and cooling capacity was found to significantly affect the heating performance. The biggest heating power of 7132.7 W · d m − 3 was obtained under 200 M V · m − 1 , and the biggest COP of 14.84 was obtained under 150 M V · m − 1 at a cyclic period of 8 s. This study provides a highly efficient, non-mobile EC heat pump that employs fluid-thermal conjugated heat transfer, and exploration of the parameters makes the optimization of the heat pump possible by fine-tuning the operation parameters.

Suggested Citation

  • Panpan Song & Yawei Zhu & Zhongyan An & Mingshan Wei & Xiaoxia Sun & Yangjun Zhang, 2023. "Performance Study on an Electrocaloric Heat Pump Based on Ga-Based Liquid Metal," Energies, MDPI, vol. 16(7), pages 1-21, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3104-:d:1110523
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/7/3104/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/7/3104/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yuan Meng & Ziyang Zhang & Hanxiang Wu & Ruiyi Wu & Jianghan Wu & Haolun Wang & Qibing Pei, 2020. "A cascade electrocaloric cooling device for large temperature lift," Nature Energy, Nature, vol. 5(12), pages 996-1002, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ming-Ding Li & Xiao-Quan Shen & Xin Chen & Jia-Ming Gan & Fang Wang & Jian Li & Xiao-Liang Wang & Qun-Dong Shen, 2022. "Thermal management of chips by a device prototype using synergistic effects of 3-D heat-conductive network and electrocaloric refrigeration," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Zhang, Jiongjiong & Zhu, Yuxiang & Cheng, Siyuan & Yao, Shuhuai & Sun, Qingping, 2023. "Effect of inactive section on cooling performance of compressive elastocaloric refrigeration prototype," Applied Energy, Elsevier, vol. 351(C).
    3. Qiang Li & Luqi Wei & Ni Zhong & Xiaoming Shi & Donglin Han & Shanyu Zheng & Feihong Du & Junye Shi & Jiangping Chen & Houbing Huang & Chungang Duan & Xiaoshi Qian, 2024. "Low-k nano-dielectrics facilitate electric-field induced phase transition in high-k ferroelectric polymers for sustainable electrocaloric refrigeration," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Jiawei Tang & Patrick Luk, 2022. "Wearable Bio-Inspired Pulsating-Flow Cooling for Live Garments Based on a Novel Design of Ferrofluid Micro-Valve," Energies, MDPI, vol. 15(23), pages 1-18, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:7:p:3104-:d:1110523. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.