IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i4p1777-d1064533.html
   My bibliography  Save this article

A Feasibility Study of Implementing IEEE 1547 and IEEE 2030 Standards for Microgrid in the Kingdom of Saudi Arabia

Author

Listed:
  • Ahmed Sulaiman Alsafran

    (Electrical Engineering Department, King Faisal University, Al Ahsa 31982, Saudi Arabia)

Abstract

The Kingdom of Saudi Arabia’s (KSA) microgrids must make significant progress during the next five years, since the Saudi government published the Saudi Vision 2030 and the National Transformation Program 2020. In order to implement renewable energy and microgrid technologies in the Saudi Electric Power System(EPS), King Abdullah City for Atomic and Renewable Energy (K.A.CARE) started developing an energy mix program in 2016. To achieve the intended goals, this program will unquestionably need to adhere to practical and technical criteria. In the past five years, the Saudi government has made significant investments in renewable energy technology. In order to keep up with the growth of microgrid systems globally, the Saudi Water and Electricity Regulatory Authority (WERA) is now working to update and define a standard for microgrids. The IEEE 2030 standard, which includes guidelines for understanding smart grid interoperability the integration of communication architectures and power systems, and information technology architectures, is proposed to replace the IEEE 1547.4 standard currently in use by the WERA. In the past two decades, smart grid technology has advanced dramatically and attracted great technical attention. To guarantee that K.A.CARE and other research and technical institutes can effectively complete their deliverables, a standard for microgrids has to be established. Additionally, this paper offers some recommendations on how to use these standards to implement them in the Saudi EPS, as well as a feasibility analysis for adopting the IEEE 1547.4 standard in the KSA.

Suggested Citation

  • Ahmed Sulaiman Alsafran, 2023. "A Feasibility Study of Implementing IEEE 1547 and IEEE 2030 Standards for Microgrid in the Kingdom of Saudi Arabia," Energies, MDPI, vol. 16(4), pages 1-15, February.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1777-:d:1064533
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/4/1777/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/4/1777/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    2. Mohammad Soleymannejad & Danial Sadrian Zadeh & Behzad Moshiri & Ebrahim Navid Sadjadi & Jesús García Herrero & Jose Manuel Molina López, 2022. "State Estimation Fusion for Linear Microgrids over an Unreliable Network," Energies, MDPI, vol. 15(6), pages 1-24, March.
    3. Md. Fatin Ishraque & Akhlaqur Rahman & Sk. A. Shezan & GM Shafiullah, 2022. "Operation and Assessment of a Microgrid for Maldives: Islanded and Grid-Tied Mode," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    4. David Rebollal & Miguel Carpintero-Rentería & David Santos-Martín & Mónica Chinchilla, 2021. "Microgrid and Distributed Energy Resources Standards and Guidelines Review: Grid Connection and Operation Technical Requirements," Energies, MDPI, vol. 14(3), pages 1-24, January.
    5. Ahmed M. Hussien & Jonghoon Kim & Abdulaziz Alkuhayli & Mohammed Alharbi & Hany M. Hasanien & Marcos Tostado-Véliz & Rania A. Turky & Francisco Jurado, 2022. "Adaptive PI Control Strategy for Optimal Microgrid Autonomous Operation," Sustainability, MDPI, vol. 14(22), pages 1-22, November.
    6. Eun-Tae Son & In-Su Bae & Sung-Yul Kim & Dong-Min Kim, 2022. "Resilience-Oriented Framework for Microgrid Planning in Distribution Systems," Energies, MDPI, vol. 15(6), pages 1-17, March.
    7. Amro M. Elshurafa & Mohammad H. Aldubyan, 2019. "State-of-Charge Effects on Standalone Solar-Storage Systems in Hot Climates: A Case Study in Saudi Arabia," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    8. Shanmugarajah Vinothine & Lidula N. Widanagama Arachchige & Athula D. Rajapakse & Roshani Kaluthanthrige, 2022. "Microgrid Energy Management and Methods for Managing Forecast Uncertainties," Energies, MDPI, vol. 15(22), pages 1-22, November.
    9. Ahmed S. Alsafran & Malcolm W. Daniels, 2020. "Consensus Control for Reactive Power Sharing Using an Adaptive Virtual Impedance Approach," Energies, MDPI, vol. 13(8), pages 1-26, April.
    10. Md Masud Rana & Mohamed Atef & Md Rasel Sarkar & Moslem Uddin & GM Shafiullah, 2022. "A Review on Peak Load Shaving in Microgrid—Potential Benefits, Challenges, and Future Trend," Energies, MDPI, vol. 15(6), pages 1-17, March.
    11. Ussama Assad & Muhammad Arshad Shehzad Hassan & Umar Farooq & Asif Kabir & Muhammad Zeeshan Khan & S. Sabahat H. Bukhari & Zain ul Abidin Jaffri & Judit Oláh & József Popp, 2022. "Smart Grid, Demand Response and Optimization: A Critical Review of Computational Methods," Energies, MDPI, vol. 15(6), pages 1-36, March.
    12. Yoldaş, Yeliz & Önen, Ahmet & Muyeen, S.M. & Vasilakos, Athanasios V. & Alan, İrfan, 2017. "Enhancing smart grid with microgrids: Challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 205-214.
    13. Guodong Liu & Thomas B. Ollis & Maximiliano F. Ferrari & Aditya Sundararajan & Kevin Tomsovic, 2022. "Robust Scheduling of Networked Microgrids for Economics and Resilience Improvement," Energies, MDPI, vol. 15(6), pages 1-19, March.
    14. Daniele Ferreira & Sidelmo Silva & Waner Silva & Danilo Brandao & Gilbert Bergna & Elisabetta Tedeschi, 2022. "Overview of Consensus Protocol and Its Application to Microgrid Control," Energies, MDPI, vol. 15(22), pages 1-35, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hussain A. Alhaiz & Ahmed S. Alsafran & Ali H. Almarhoon, 2023. "Single-Phase Microgrid Power Quality Enhancement Strategies: A Comprehensive Review," Energies, MDPI, vol. 16(14), pages 1-28, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jin-Li Hu, 2022. "Energy Resilience in Presence of Natural and Social Uncertainties," Energies, MDPI, vol. 15(18), pages 1-3, September.
    2. Guodong Liu & Maximiliano F. Ferrari & Thomas B. Ollis & Kevin Tomsovic, 2022. "An MILP-Based Distributed Energy Management for Coordination of Networked Microgrids," Energies, MDPI, vol. 15(19), pages 1-20, September.
    3. Mohseni, Soheil & Brent, Alan C. & Kelly, Scott & Browne, Will N., 2022. "Demand response-integrated investment and operational planning of renewable and sustainable energy systems considering forecast uncertainties: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    4. Guodong Liu & Maximiliano F. Ferrari & Thomas B. Ollis & Aditya Sundararajan & Mohammed Olama & Yang Chen, 2023. "Distributed Energy Management for Networked Microgrids with Hardware-in-the-Loop Validation," Energies, MDPI, vol. 16(7), pages 1-27, March.
    5. Vinny Motjoadi & Pitshou N. Bokoro & Moses O. Onibonoje, 2020. "A Review of Microgrid-Based Approach to Rural Electrification in South Africa: Architecture and Policy Framework," Energies, MDPI, vol. 13(9), pages 1-22, May.
    6. Milis, Kevin & Peremans, Herbert & Van Passel, Steven, 2018. "Steering the adoption of battery storage through electricity tariff design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 125-139.
    7. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Challenges, opportunities, and strategies for undertaking integrated precinct-scale energy–water system planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Semaria Ruiz & Julian Patiño & Alejandro Marquez-Ruiz & Jairo Espinosa & Eduardo Duque & Paola Ortiz, 2019. "Optimal Design of a Diesel-PV-Wind-Battery-Hydro Pumped POWER system with the Integration of ELECTRIC vehicles in a Colombian Community," Energies, MDPI, vol. 12(23), pages 1-19, November.
    9. Chen, Xia & Zhou, Jianyu & Shi, Mengxuan & Chen, Yin & Wen, Jinyu, 2022. "Distributed resilient control against denial of service attacks in DC microgrids with constant power load," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    10. José F. C. Castro & Ronaldo A. Roncolatto & Antonio R. Donadon & Vittoria E. M. S. Andrade & Pedro Rosas & Rafael G. Bento & José G. Matos & Fernando A. Assis & Francisco C. R. Coelho & Rodolfo Quadro, 2023. "Microgrid Applications and Technical Challenges—The Brazilian Status of Connection Standards and Operational Procedures," Energies, MDPI, vol. 16(6), pages 1-25, March.
    11. Aron Kondoro & Imed Ben Dhaou & Hannu Tenhunen & Nerey Mvungi, 2021. "A Low Latency Secure Communication Architecture for Microgrid Control," Energies, MDPI, vol. 14(19), pages 1-26, October.
    12. Anand Krishnan Prakash & Kun Zhang & Pranav Gupta & David Blum & Marc Marshall & Gabe Fierro & Peter Alstone & James Zoellick & Richard Brown & Marco Pritoni, 2020. "Solar+ Optimizer: A Model Predictive Control Optimization Platform for Grid Responsive Building Microgrids," Energies, MDPI, vol. 13(12), pages 1-27, June.
    13. Amrutha Raju Battula & Sandeep Vuddanti & Surender Reddy Salkuti, 2021. "Review of Energy Management System Approaches in Microgrids," Energies, MDPI, vol. 14(17), pages 1-32, September.
    14. Norouzi, Farshid & Hoppe, Thomas & Elizondo, Laura Ramirez & Bauer, Pavol, 2022. "A review of socio-technical barriers to Smart Microgrid development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    15. Wang, Richard & Hsu, Shu-Chien & Zheng, Saina & Chen, Jieh-Haur & Li, Xuran Ivan, 2020. "Renewable energy microgrids: Economic evaluation and decision making for government policies to contribute to affordable and clean energy," Applied Energy, Elsevier, vol. 274(C).
    16. Jose L. López-Prado & Jorge I. Vélez & Guisselle A. Garcia-Llinás, 2020. "Reliability Evaluation in Distribution Networks with Microgrids: Review and Classification of the Literature," Energies, MDPI, vol. 13(23), pages 1-31, November.
    17. Farhat Afzah Samoon & Ikhlaq Hussain & Sheikh Javed Iqbal, 2023. "ILA Optimisation Based Control for Enhancing DC Link Voltage with Seamless and Adaptive VSC Control in a PV-BES Based AC Microgrid," Energies, MDPI, vol. 16(21), pages 1-23, October.
    18. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    19. Dimitrios Trigkas & Chrysovalantou Ziogou & Spyros Voutetakis & Simira Papadopoulou, 2021. "Virtual Energy Storage in RES-Powered Smart Grids with Nonlinear Model Predictive Control," Energies, MDPI, vol. 14(4), pages 1-22, February.
    20. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:4:p:1777-:d:1064533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.