IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i3p1152-d1042391.html
   My bibliography  Save this article

Review and Comparison of Genetic Algorithm and Particle Swarm Optimization in the Optimal Power Flow Problem

Author

Listed:
  • Georgios Papazoglou

    (School of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece)

  • Pandelis Biskas

    (School of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece)

Abstract

Metaheuristic optimization techniques have successfully been used to solve the Optimal Power Flow (OPF) problem, addressing the shortcomings of mathematical optimization techniques. Two of the most popular metaheuristics are the Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The literature surrounding GA and PSO OPF is vast and not adequately organized. This work filled this gap by reviewing the most prominent works and analyzing the different traits of GA OPF works along seven axes, and of PSO OPF along four axes. Subsequently, cross-comparison between GA and PSO OPF works was undertaken, using the reported results of the reviewed works that use the IEEE 30-bus network to assess the performance and accuracy of each method. Where possible, the practices used in GA and PSO OPF were compared with literature suggestions from other domains. The cross-comparison aimed to act as a first step towards the standardization of GA and PSO OPF, as it can be used to draw preliminary conclusions regarding the tuning of hyper-parameters of GA and PSO OPF. The analysis of the cross-comparison results indicated that works using both GA and PSO OPF offer remarkable accuracy (with GA OPF having a slight edge) and that PSO OPF involves less computational burden.

Suggested Citation

  • Georgios Papazoglou & Pandelis Biskas, 2023. "Review and Comparison of Genetic Algorithm and Particle Swarm Optimization in the Optimal Power Flow Problem," Energies, MDPI, vol. 16(3), pages 1-25, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1152-:d:1042391
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/3/1152/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/3/1152/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Stephen Frank & Steffen Rebennack, 2016. "An introduction to optimal power flow: Theory, formulation, and examples," IISE Transactions, Taylor & Francis Journals, vol. 48(12), pages 1172-1197, December.
    2. Georgios Papazoglou & Pandelis Biskas, 2022. "Review of Methodologies for the Assessment of Feasible Operating Regions at the TSO–DSO Interface," Energies, MDPI, vol. 15(14), pages 1-24, July.
    3. Papadimitrakis, M. & Giamarelos, N. & Stogiannos, M. & Zois, E.N. & Livanos, N.A.-I. & Alexandridis, A., 2021. "Metaheuristic search in smart grid: A review with emphasis on planning, scheduling and power flow optimization applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    4. Aikaterini Forouli & Emmanouil A. Bakirtzis & Georgios Papazoglou & Konstantinos Oureilidis & Vasileios Gkountis & Luisa Candido & Eloi Delgado Ferrer & Pandelis Biskas, 2021. "Assessment of Demand Side Flexibility in European Electricity Markets: A Country Level Review," Energies, MDPI, vol. 14(8), pages 1-23, April.
    5. Marcel Sarstedt & Leonard Kluß & Johannes Gerster & Tobias Meldau & Lutz Hofmann, 2021. "Survey and Comparison of Optimization-Based Aggregation Methods for the Determination of the Flexibility Potentials at Vertical System Interconnections," Energies, MDPI, vol. 14(3), pages 1-27, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rafael B. S. Veras & Clóvis B. M. Oliveira & Shigeaki L. de Lima & Osvaldo R. Saavedra & Denisson Q. Oliveira & Felipe M. Pimenta & Denivaldo C. P. Lopes & Audálio R. Torres Junior & Francisco L. A. N, 2023. "Assessing Economic Complementarity in Wind–Solar Hybrid Power Plants Connected to the Brazilian Grid," Sustainability, MDPI, vol. 15(11), pages 1-20, May.
    2. Mohamed S. Hashish & Hany M. Hasanien & Zia Ullah & Abdulaziz Alkuhayli & Ahmed O. Badr, 2023. "Giant Trevally Optimization Approach for Probabilistic Optimal Power Flow of Power Systems Including Renewable Energy Systems Uncertainty," Sustainability, MDPI, vol. 15(18), pages 1-27, September.
    3. Haltor Mataifa & Senthil Krishnamurthy & Carl Kriger, 2023. "Comparative Analysis of the Particle Swarm Optimization and Primal-Dual Interior-Point Algorithms for Transmission System Volt/VAR Optimization in Rectangular Voltage Coordinates," Mathematics, MDPI, vol. 11(19), pages 1-29, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Georgios Papazoglou & Pandelis Biskas, 2022. "Review of Methodologies for the Assessment of Feasible Operating Regions at the TSO–DSO Interface," Energies, MDPI, vol. 15(14), pages 1-24, July.
    2. Karim L. Anaya & Michael G. Pollitt, 2021. "How to Procure Flexibility Services within the Electricity Distribution System: Lessons from an International Review of Innovation Projects," Energies, MDPI, vol. 14(15), pages 1-26, July.
    3. Sander Claeys & Marta Vanin & Frederik Geth & Geert Deconinck, 2021. "Applications of optimization models for electricity distribution networks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(5), September.
    4. Lukas Kriechbaum & Philipp Gradl & Romeo Reichenhauser & Thomas Kienberger, 2020. "Modelling Grid Constraints in a Multi-Energy Municipal Energy System Using Cumulative Exergy Consumption Minimisation," Energies, MDPI, vol. 13(15), pages 1-23, July.
    5. Chen, Ting & Vandendriessche, Frederik, 2023. "Enabling independent flexibility service providers to participate in electricity markets: A legal analysis of the Belgium case," Utilities Policy, Elsevier, vol. 81(C).
    6. Nouha Dkhili & David Salas & Julien Eynard & Stéphane Thil & Stéphane Grieu, 2021. "Innovative Application of Model-Based Predictive Control for Low-Voltage Power Distribution Grids with Significant Distributed Generation," Energies, MDPI, vol. 14(6), pages 1-28, March.
    7. Marcel Sarstedt & Leonard Kluß & Johannes Gerster & Tobias Meldau & Lutz Hofmann, 2021. "Survey and Comparison of Optimization-Based Aggregation Methods for the Determination of the Flexibility Potentials at Vertical System Interconnections," Energies, MDPI, vol. 14(3), pages 1-27, January.
    8. Konstantinos Kotsalos & Ismael Miranda & Nuno Silva & Helder Leite, 2019. "A Horizon Optimization Control Framework for the Coordinated Operation of Multiple Distributed Energy Resources in Low Voltage Distribution Networks," Energies, MDPI, vol. 12(6), pages 1-27, March.
    9. Abdullah Khan & Hashim Hizam & Noor Izzri bin Abdul Wahab & Mohammad Lutfi Othman, 2020. "Optimal power flow using hybrid firefly and particle swarm optimization algorithm," PLOS ONE, Public Library of Science, vol. 15(8), pages 1-21, August.
    10. Diego Larrahondo & Ricardo Moreno & Harold R. Chamorro & Francisco Gonzalez-Longatt, 2021. "Comparative Performance of Multi-Period ACOPF and Multi-Period DCOPF under High Integration of Wind Power," Energies, MDPI, vol. 14(15), pages 1-15, July.
    11. Muhammad, Yasir & Khan, Nusrat & Awan, Saeed Ehsan & Raja, Muhammad Asif Zahoor & Chaudhary, Naveed Ishtiaq & Kiani, Adiqa Kausar & Ullah, Farman & Shu, Chi-Min, 2022. "Fractional memetic computing paradigm for reactive power management involving wind-load chaos and uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    12. Skolfield, J. Kyle & Escobedo, Adolfo R., 2022. "Operations research in optimal power flow: A guide to recent and emerging methodologies and applications," European Journal of Operational Research, Elsevier, vol. 300(2), pages 387-404.
    13. Ricardo Silva & Everton Alves & Ricardo Ferreira & José Villar & Clara Gouveia, 2021. "Characterization of TSO and DSO Grid System Services and TSO-DSO Basic Coordination Mechanisms in the Current Decarbonization Context," Energies, MDPI, vol. 14(15), pages 1-30, July.
    14. Ottenburger, Sadeeb Simon & Çakmak, Hüseyin Kemal & Jakob, Wilfried & Blattmann, Andreas & Trybushnyi, Dmytro & Raskob, Wolfgang & Kühnapfel, Uwe & Hagenmeyer, Veit, 2020. "A novel optimization method for urban resilient and fair power distribution preventing critical network states," International Journal of Critical Infrastructure Protection, Elsevier, vol. 29(C).
    15. Aguado, José A. & Paredes, Ángel, 2023. "Coordinated and decentralized trading of flexibility products in Inter-DSO Local Electricity Markets via ADMM," Applied Energy, Elsevier, vol. 337(C).
    16. Viet-Cuong Trieu & Fu-Ren Lin, 2022. "The Development of a Service System for Facilitating Food Resource Allocation and Service Exchange," Sustainability, MDPI, vol. 14(19), pages 1-29, September.
    17. Mohamed A. M. Shaheen & Hany M. Hasanien & Said F. Mekhamer & Mohammed H. Qais & Saad Alghuwainem & Zia Ullah & Marcos Tostado-Véliz & Rania A. Turky & Francisco Jurado & Mohamed R. Elkadeem, 2022. "Probabilistic Optimal Power Flow Solution Using a Novel Hybrid Metaheuristic and Machine Learning Algorithm," Mathematics, MDPI, vol. 10(17), pages 1-23, August.
    18. Zhongyang Zhao & Caisheng Wang & Masoud H. Nazari, 2024. "Revenue Analysis of Stationary and Transportable Battery Storage for Power Systems: A Market Participant Perspective," Sustainability, MDPI, vol. 16(6), pages 1-16, March.
    19. Marios-Charilaos Sousounis & Epameinondas (Nondas) Floros & Fotios-Konstantinos Paterakis & Christos Dikaiakos & Ioannis Moraitis, 2023. "Voltage Control Market Integration: Technical and Regulatory Challenges for the Greek Electricity Market," Energies, MDPI, vol. 16(5), pages 1-16, February.
    20. Nouha Dkhili & Julien Eynard & Stéphane Thil & Stéphane Grieu, 2021. "Resilient Predictive Control Coupled with a Worst-Case Scenario Approach for a Distributed-Generation-Rich Power Distribution Grid," Clean Technol., MDPI, vol. 3(3), pages 1-27, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:3:p:1152-:d:1042391. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.