IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2022i1p322-d1017463.html
   My bibliography  Save this article

Insulation Degradation Mechanism and Diagnosis Methods of Offshore Wind Power Cables: An Overview

Author

Listed:
  • Baopeng Lu

    (School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Shuaibing Li

    (School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Yi Cui

    (School of Engineering, University of Southern Queensland, Brisbane 4702, Australia)

  • Xiaowei Zhao

    (Linxia Power Supply Company, State Grid Gansu Electrical Power Company, Linxia 731100, China)

  • Daqi Zhang

    (School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Yongqiang Kang

    (School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

  • Haiying Dong

    (School of New Energy and Power Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China)

Abstract

The marine environment in which offshore wind turbines are located is very complex and subjected to a variety of random loads that vary with time and space. As an important component of offshore wind power, the cable also bears the impact of the environment in which most of the turbines are located. Under the long-term action of mechanical stresses such as tension, torsion, and vibration, the cable insulation will crack due to stress fatigue leading to partial discharge, which seriously affects its electrical performance. The study of the mechanism of the change of electrical properties of cable insulation due to mechanical behavior is of great theoretical guidance to improve the reliable operation of cables. This paper first introduces the basic characteristics and operating conditions of torsion-resistant cables and submarine cables. Then the mechanical behavior of the cables is summarized, and the deterioration mechanism and deterioration effect of wind power cable insulation under the influence of multiple factors such as heat, oxygen, and mechanical stress are sorted out. Then, the basic principles of wind power cable operation condition monitoring methods and their characteristics are described. Finally, the relevant methods for the detection of hidden defects inside the insulation are summarized.

Suggested Citation

  • Baopeng Lu & Shuaibing Li & Yi Cui & Xiaowei Zhao & Daqi Zhang & Yongqiang Kang & Haiying Dong, 2022. "Insulation Degradation Mechanism and Diagnosis Methods of Offshore Wind Power Cables: An Overview," Energies, MDPI, vol. 16(1), pages 1-26, December.
  • Handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:322-:d:1017463
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/1/322/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/1/322/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Taormina, Bastien & Bald, Juan & Want, Andrew & Thouzeau, Gérard & Lejart, Morgane & Desroy, Nicolas & Carlier, Antoine, 2018. "A review of potential impacts of submarine power cables on the marine environment: Knowledge gaps, recommendations and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 380-391.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Asfarina Abu Bakar & Chai Chang Yii & Chin Kui Fern & Yoong Hou Pin & Herwansyah Lago & Mohamad Nur Khairul Hafizi Rohani, 2023. "A Comparison of Double-End Partial Discharge Localization Algorithms in Power Cables," Energies, MDPI, vol. 16(4), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hutchison, Zoë L. & Gill, Andrew B. & Sigray, Peter & He, Haibo & King, John W., 2021. "A modelling evaluation of electromagnetic fields emitted by buried subsea power cables and encountered by marine animals: Considerations for marine renewable energy development," Renewable Energy, Elsevier, vol. 177(C), pages 72-81.
    2. M. A. Clare & A. Lichtschlag & S. Paradis & N. L. M. Barlow, 2023. "Assessing the impact of the global subsea telecommunications network on sedimentary organic carbon stocks," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Cullinane, M. & Judge, F. & O'Shea, M. & Thandayutham, K. & Murphy, J., 2022. "Subsea superconductors: The future of offshore renewable energy transmission?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    4. Graciela Rivera & Angélica Felix & Edgar Mendoza, 2020. "A Review on Environmental and Social Impacts of Thermal Gradient and Tidal Currents Energy Conversion and Application to the Case of Chiapas, Mexico," IJERPH, MDPI, vol. 17(21), pages 1-18, October.
    5. Itiki, Rodney & Manjrekar, Madhav & Di Santo, Silvio Giuseppe & Machado, Luis Fernando M., 2020. "Technical feasibility of Japan-Taiwan-Philippines HVdc interconnector to the Asia Pacific Super Grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    6. Cazzaro, Davide & Koza, David Franz & Pisinger, David, 2023. "Combined layout and cable optimization of offshore wind farms," European Journal of Operational Research, Elsevier, vol. 311(1), pages 301-315.
    7. C, O. Mauricio Hernandez & Shadman, Milad & Amiri, Mojtaba Maali & Silva, Corbiniano & Estefen, Segen F. & La Rovere, Emilio, 2021. "Environmental impacts of offshore wind installation, operation and maintenance, and decommissioning activities: A case study of Brazil," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2022:i:1:p:322-:d:1017463. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.