IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i9p3199-d803589.html
   My bibliography  Save this article

A New Adsorption Equation for Nano-Porous Shale Rocks and Its Application in Pore Size Distribution Analysis

Author

Listed:
  • Yuanyuan Tian

    (Post-Doctoral Research Station of Geological Resource and Geological Engineering, Chengdu University of Technology, Chengdu 610059, China
    College of Energy, Chengdu University of Technology, Chengdu 610059, China)

  • Qing Chen

    (College of Energy, Chengdu University of Technology, Chengdu 610059, China)

  • Changhui Yan

    (College of Energy, Chengdu University of Technology, Chengdu 610059, China)

  • Hongde Chen

    (Institute of Sedimentology, Chengdu University of Technology, Chengdu 610059, China)

  • Yanqing He

    (College of Energy, Chengdu University of Technology, Chengdu 610059, China)

  • Yufeng He

    (College of Energy, Chengdu University of Technology, Chengdu 610059, China)

Abstract

Adsorption equations are important to analyze the pore size distribution (PSD) of shale and the adsorption behavior on it. However, the accurate description of nitrogen adsorption on shale by current adsorption equations is difficult to achieve due to the heterogeneous pore structure of shale. In our study, new adsorption isotherms that can properly depict the adsorbed amount of nitrogen were built for shale rocks considering both the processes of nitrogen adsorption and the cylindrical pore shape property of shale. When performing a regression analysis on five sets of experimental adsorption data using the developed adsorption equations, the R-square ranged from 0.739 to 0.987. Based on the pore shape determined by adsorption–desorption curves, the distinct R-square indicated that our equation is not valid for shale samples with ink-bottle pores and pores formed by schistose materials, but that it is suitable for shale samples with cylindrical pores and slit pores. Meanwhile, we precisely analyzed the PSDs of shale rocks based on the developed adsorption equations as capillary condensation volume is involved in the total adsorbed amount. Thus, the PSDs of shale rocks with cylindrical pore and slit pore were analyzed by the new adsorption equation.

Suggested Citation

  • Yuanyuan Tian & Qing Chen & Changhui Yan & Hongde Chen & Yanqing He & Yufeng He, 2022. "A New Adsorption Equation for Nano-Porous Shale Rocks and Its Application in Pore Size Distribution Analysis," Energies, MDPI, vol. 15(9), pages 1-13, April.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3199-:d:803589
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/9/3199/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/9/3199/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chen, Shangbin & Zhu, Yanming & Wang, Hongyan & Liu, Honglin & Wei, Wei & Fang, Junhua, 2011. "Shale gas reservoir characterisation: A typical case in the southern Sichuan Basin of China," Energy, Elsevier, vol. 36(11), pages 6609-6616.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yin, Hong & Zhou, Junping & Xian, Xuefu & Jiang, Yongdong & Lu, Zhaohui & Tan, Jingqiang & Liu, Guojun, 2017. "Experimental study of the effects of sub- and super-critical CO2 saturation on the mechanical characteristics of organic-rich shales," Energy, Elsevier, vol. 132(C), pages 84-95.
    2. Xiaoyan Zou & Xianqing Li & Jizhen Zhang & Huantong Li & Man Guo & Pei Zhao, 2021. "Characteristics of Pore Structure and Gas Content of the Lower Paleozoic Shale from the Upper Yangtze Plate, South China," Energies, MDPI, vol. 14(22), pages 1-29, November.
    3. Qin, Chao & Jiang, Yongdong & Zuo, Shuangying & Chen, Shiwan & Xiao, Siyou & Liu, Zhengjie, 2021. "Investigation of adsorption kinetics of CH4 and CO2 on shale exposure to supercritical CO2," Energy, Elsevier, vol. 236(C).
    4. Chen, Junqing & Jiang, Fujie & Cong, Qi & Pang, Xiongqi & Ma, Kuiyou & Shi, Kanyuan & Pang, Bo & Chen, Dongxia & Pang, Hong & Yang, Xiaobin & Wang, Yuying & Li, Bingyao, 2023. "Adsorption characteristics of shale gas in organic–inorganic slit pores," Energy, Elsevier, vol. 278(C).
    5. Zhiyao Zhang & Shang Xu & Qiyang Gou & Qiqi Li, 2022. "Reservoir Characteristics and Resource Potential of Marine Shale in South China: A Review," Energies, MDPI, vol. 15(22), pages 1-21, November.
    6. Gou, Qiyang & Xu, Shang & Hao, Fang & Yang, Feng & Shu, Zhiguo & Liu, Rui, 2021. "The effect of tectonic deformation and preservation condition on the shale pore structure using adsorption-based textural quantification and 3D image observation," Energy, Elsevier, vol. 219(C).
    7. Yang, Xu & Zhou, Wenning & Liu, Xunliang & Yan, Yuying, 2020. "A multiscale approach for simulation of shale gas transport in organic nanopores," Energy, Elsevier, vol. 210(C).
    8. Dai, Xuguang & Wei, Chongtao & Wang, Meng & Ma, Ruying & Song, Yu & Zhang, Junjian & Wang, Xiaoqi & Shi, Xuan & Vandeginste, Veerle, 2023. "Interaction mechanism of supercritical CO2 with shales and a new quantitative storage capacity evaluation method," Energy, Elsevier, vol. 264(C).
    9. Wang, Wenyang & Pang, Xiongqi & Chen, Zhangxin & Chen, Dongxia & Zheng, Tianyu & Luo, Bing & Li, Jing & Yu, Rui, 2019. "Quantitative prediction of oil and gas prospects of the Sinian-Lower Paleozoic in the Sichuan Basin in central China," Energy, Elsevier, vol. 174(C), pages 861-872.
    10. Wang, Sha & Jiang, Xiumin & Han, Xiangxin & Tong, Jianhui, 2012. "Investigation of Chinese oil shale resources comprehensive utilization performance," Energy, Elsevier, vol. 42(1), pages 224-232.
    11. Bryan X. Medina-Rodriguez & Vladimir Alvarado, 2021. "Use of Gas Adsorption and Inversion Methods for Shale Pore Structure Characterization," Energies, MDPI, vol. 14(10), pages 1-24, May.
    12. Lu, Yiyu & Chen, Xiayu & Tang, Jiren & Li, Honglian & Zhou, Lei & Han, Shuaibin & Ge, Zhaolong & Xia, Binwei & Shen, Huajian & Zhang, Jing, 2019. "Relationship between pore structure and mechanical properties of shale on supercritical carbon dioxide saturation," Energy, Elsevier, vol. 172(C), pages 270-285.
    13. Hui, Gang & Chen, Zhangxin & Wang, Youjing & Zhang, Dongmei & Gu, Fei, 2023. "An integrated machine learning-based approach to identifying controlling factors of unconventional shale productivity," Energy, Elsevier, vol. 266(C).
    14. Mihail Nikolaevich Dudin & Nikolaj Vasilevich Lyasnikov & Vladimir Dmitriyevich Sekerin & Anna Evgenevna Gorohova & Vyacheslav Viktorovich Burlakov, 2016. "Provision of Energy Security at the National Level in the Context of the Global Gas Transportation Industry Development," International Journal of Energy Economics and Policy, Econjournals, vol. 6(2), pages 234-242.
    15. Qin, Chao & Jiang, Yongdong & Luo, Yahuang & Zhou, Junping & Liu, Hao & Song, Xiao & Li, Dong & Zhou, Feng & Xie, Yingliang, 2020. "Effect of supercritical CO2 saturation pressures and temperatures on the methane adsorption behaviours of Longmaxi shale," Energy, Elsevier, vol. 206(C).
    16. Zhifeng Zhang & Yongjian Huang & Bo Ran & Wei Liu & Xiang Li & Chengshan Wang, 2021. "Chemostratigraphic Analysis of Wufeng and Longmaxi Formation in Changning, Sichuan, China: Achieved by Principal Component and Constrained Clustering Analysis," Energies, MDPI, vol. 14(21), pages 1-21, October.
    17. Lu, Yiyu & Xu, Zijie & Li, Honglian & Tang, Jiren & Chen, Xiayu, 2021. "The influences of super-critical CO2 saturation on tensile characteristics and failure modes of shales," Energy, Elsevier, vol. 221(C).
    18. Chunhui Cao & Liwu Li & Yuhu Liu & Li Du & Zhongping Li & Jian He, 2020. "Factors Affecting Shale Gas Chemistry and Stable Isotope and Noble Gas Isotope Composition and Distribution: A Case Study of Lower Silurian Longmaxi Shale Gas, Sichuan Basin," Energies, MDPI, vol. 13(22), pages 1-15, November.
    19. Gang Hui & Fei Gu & Junqi Gan & Erfan Saber & Li Liu, 2023. "An Integrated Approach to Reservoir Characterization for Evaluating Shale Productivity of Duvernary Shale: Insights from Multiple Linear Regression," Energies, MDPI, vol. 16(4), pages 1-18, February.
    20. Ju, Yang & He, Jian & Chang, Elliot & Zheng, Liange, 2019. "Quantification of CH4 adsorption capacity in kerogen-rich reservoir shales: An experimental investigation and molecular dynamic simulation," Energy, Elsevier, vol. 170(C), pages 411-422.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:9:p:3199-:d:803589. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.