IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i12p4437-d841822.html
   My bibliography  Save this article

Magnéli TiO 2 as a High Durability Support for the Proton Exchange Membrane (PEM) Fuel Cell Catalysts

Author

Listed:
  • Jivan Thakare

    (Energy and Environmental Research Center, University of North Dakota, Grand Forks, ND 58202, USA)

  • Jahangir Masud

    (Energy and Environmental Research Center, University of North Dakota, Grand Forks, ND 58202, USA)

Abstract

Proton exchange membrane fuel cells (PEMFCs) cathode catalysts’ robustness is one of the primary factors determining its long-term performance and durability. This work presented a new class of corrosion-resistant catalyst, Magnél TiO 2 supported Pt (Pt/Ti 9 O 17 ) composite, synthesized. The durability of a Pt/Ti 9 O 17 cathode under the PEMFC operating protocol was evaluated and compared with the state-of-the-art Pt/C catalyst. Like Pt/C, Pt/Ti 9 O 17 exhibited exclusively 4e − oxygen reduction reaction (ORR) in the acidic solution. The accelerated stress tests (AST) were performed using Pt/Ti 9 O 17 and Pt/C catalysts in an O 2 -saturated 0.5 M H 2 SO 4 solution using the potential-steps cycling experiments from 0.95 V to 0.6 V for 12,000 cycles. The results indicated that the electrochemical surface area (ECSA) of the Pt/Ti 9 O 17 is significantly more stable than that of the state-of-the-art Pt/C, and the ECSA loss after 12,000 potential cycles is only 10 ± 2% for Pt/Ti 9 O 17 composite versus 50 ± 5% for Pt/C. Furthermore, the current density and onset potential at the ORR polarization curve at Pt/C were significantly affected by the AST test. In contrast, the same remained almost constant at the modified electrode, Pt/Ti 9 O 17 . This demonstrated the excellent stability of Pt nanoparticles supported on Ti 9 O 17 .

Suggested Citation

  • Jivan Thakare & Jahangir Masud, 2022. "Magnéli TiO 2 as a High Durability Support for the Proton Exchange Membrane (PEM) Fuel Cell Catalysts," Energies, MDPI, vol. 15(12), pages 1-10, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4437-:d:841822
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/12/4437/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/12/4437/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Scheepers, Fabian & Stähler, Markus & Stähler, Andrea & Rauls, Edward & Müller, Martin & Carmo, Marcelo & Lehnert, Werner, 2021. "Temperature optimization for improving polymer electrolyte membrane-water electrolysis system efficiency," Applied Energy, Elsevier, vol. 283(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taehyung Koo & Rockkil Ko & Dongwoo Ha & Jaeyoung Han, 2023. "Development of Model-Based PEM Water Electrolysis HILS (Hardware-in-the-Loop Simulation) System for State Evaluation and Fault Detection," Energies, MDPI, vol. 16(8), pages 1-18, April.
    2. Zhang, Hong & Yuan, Tiejiang, 2022. "Optimization and economic evaluation of a PEM electrolysis system considering its degradation in variable-power operations," Applied Energy, Elsevier, vol. 324(C).
    3. Abdollahipour, Armin & Sayyaadi, Hoseyn, 2022. "A novel electrochemical refrigeration system based on the combined proton exchange membrane fuel cell-electrolyzer," Applied Energy, Elsevier, vol. 316(C).
    4. Liu, Hongwei & Ren, He & Gu, Yajing & Lin, Yonggang & Hu, Weifei & Song, Jiajun & Yang, Jinhong & Zhu, Zengxin & Li, Wei, 2023. "Design and on-site implementation of an off-grid marine current powered hydrogen production system," Applied Energy, Elsevier, vol. 330(PB).
    5. Jun Bu & Siyu Chang & Jinjin Li & Sanyin Yang & Wenxiu Ma & Zhenpeng Liu & Siying An & Yanan Wang & Zhen Li & Jian Zhang, 2023. "Highly selective electrocatalytic alkynol semi-hydrogenation for continuous production of alkenols," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Kang, Zhenye & Wang, Hao & Liu, Yanrong & Mo, Jingke & Wang, Min & Li, Jing & Tian, Xinlong, 2022. "Exploring and understanding the internal voltage losses through catalyst layers in proton exchange membrane water electrolysis devices," Applied Energy, Elsevier, vol. 317(C).
    7. Lin, Rui & Lu, Ying & Xu, Ji & Huo, Jiawei & Cai, Xin, 2022. "Investigation on performance of proton exchange membrane electrolyzer with different flow field structures," Applied Energy, Elsevier, vol. 326(C).
    8. Kumar, S. Shiva & Ni, Aleksey & Himabindu, V. & Lim, Hankwon, 2023. "Experimental and simulation of PEM water electrolyser with Pd/PN-CNPs electrodes for hydrogen evolution reaction: Performance assessment and validation," Applied Energy, Elsevier, vol. 348(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:12:p:4437-:d:841822. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.