IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i11p4125-d831304.html
   My bibliography  Save this article

Microgrid Energy Management System Based on Fuzzy Logic and Monitoring Platform for Data Analysis

Author

Listed:
  • Khaizaran Abdulhussein Al Sumarmad

    (Department of Electrical and Electronic Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia)

  • Nasri Sulaiman

    (Department of Electrical and Electronic Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia)

  • Noor Izzri Abdul Wahab

    (Department of Electrical and Electronic Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia)

  • Hashim Hizam

    (Department of Electrical and Electronic Engineering, Faculty of Engineering, University Putra Malaysia, Serdang 43400, Malaysia)

Abstract

Energy management and monitoring systems are significant difficulties in applying microgrids to smart homes. Thus, further research is required to address the modeling and operational parts of the system’s future results for various applications. This paper proposes a new technique for energy management in a microgrid using a robust control approach and the development of a platform for real-time monitoring. The developed controller is based on a fuzzy logic method used in the energy Internet paradigm with connected distributed generators (DGs) in the microgrid. The developed method regulates the power flow of the microgrid, and frequency/voltage regulation improved the load-management performance and monitoring system using the ThingSpeak platform for real-time data analysis. The MATLAB. simulation results show the feasibility and effectiveness of the proposed strategy and the introduced approach in microgrid control under various operating conditions. Additionally, the results show that the proposed monitoring platform facilitates real-time data analysis.

Suggested Citation

  • Khaizaran Abdulhussein Al Sumarmad & Nasri Sulaiman & Noor Izzri Abdul Wahab & Hashim Hizam, 2022. "Microgrid Energy Management System Based on Fuzzy Logic and Monitoring Platform for Data Analysis," Energies, MDPI, vol. 15(11), pages 1-19, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4125-:d:831304
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/11/4125/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/11/4125/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hirsch, Adam & Parag, Yael & Guerrero, Josep, 2018. "Microgrids: A review of technologies, key drivers, and outstanding issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 402-411.
    2. Bilal Naji Alhasnawi & Basil H. Jasim & Bishoy E. Sedhom & Eklas Hossain & Josep M. Guerrero, 2021. "A New Decentralized Control Strategy of Microgrids in the Internet of Energy Paradigm," Energies, MDPI, vol. 14(8), pages 1-34, April.
    3. José María Portalo & Isaías González & Antonio José Calderón, 2021. "Monitoring System for Tracking a PV Generator in an Experimental Smart Microgrid: An Open-Source Solution," Sustainability, MDPI, vol. 13(15), pages 1-23, July.
    4. Khaizaran Abdulhussein Al Sumarmad & Nasri Sulaiman & Noor Izzri Abdul Wahab & Hashim Hizam, 2022. "Energy Management and Voltage Control in Microgrids Using Artificial Neural Networks, PID, and Fuzzy Logic Controllers," Energies, MDPI, vol. 15(1), pages 1-22, January.
    5. Hiranmay Samanta & Abhijit Das & Indrajt Bose & Joydip Jana & Ankur Bhattacharjee & Konika Das Bhattacharya & Samarjit Sengupta & Hiranmay Saha, 2021. "Field-Validated Communication Systems for Smart Microgrid Energy Management in a Rural Microgrid Cluster," Energies, MDPI, vol. 14(19), pages 1-15, October.
    6. Kumar, R. Seshu & Raghav, L. Phani & Raju, D. Koteswara & Singh, Arvind R., 2021. "Intelligent demand side management for optimal energy scheduling of grid connected microgrids," Applied Energy, Elsevier, vol. 285(C).
    7. Roslan, M.F. & Hannan, M.A. & Ker, Pin Jern & Uddin, M.N., 2019. "Microgrid control methods toward achieving sustainable energy management," Applied Energy, Elsevier, vol. 240(C), pages 583-607.
    8. Aiman J. Albarakati & Younes Boujoudar & Mohamed Azeroual & Reda Jabeur & Ayman Aljarbouh & Hassan El Moussaoui & Tijani Lamhamdi & Najat Ouaaline, 2021. "Real-Time Energy Management for DC Microgrids Using Artificial Intelligence," Energies, MDPI, vol. 14(17), pages 1-16, August.
    9. Seshu Kumar, R. & Phani Raghav, L. & Koteswara Raju, D. & Singh, Arvind R., 2021. "Impact of multiple demand side management programs on the optimal operation of grid-connected microgrids," Applied Energy, Elsevier, vol. 301(C).
    10. Zhe Xiao & Tinghua Li & Ming Huang & Jihong Shi & Jingjing Yang & Jiang Yu & Wei Wu, 2010. "Hierarchical MAS Based Control Strategy for Microgrid," Energies, MDPI, vol. 3(9), pages 1-17, September.
    11. Mohammad Shakeri & Jagadeesh Pasupuleti & Nowshad Amin & Md. Rokonuzzaman & Foo Wah Low & Chong Tak Yaw & Nilofar Asim & Nurul Asma Samsudin & Sieh Kiong Tiong & Chong Kok Hen & Chin Wei Lai, 2020. "An Overview of the Building Energy Management System Considering the Demand Response Programs, Smart Strategies and Smart Grid," Energies, MDPI, vol. 13(13), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Dominic Savio Abraham & Balaji Chandrasekar & Narayanamoorthi Rajamanickam & Pradeep Vishnuram & Venkatesan Ramakrishnan & Mohit Bajaj & Marian Piecha & Vojtech Blazek & Lukas Prokop, 2023. "Fuzzy-Based Efficient Control of DC Microgrid Configuration for PV-Energized EV Charging Station," Energies, MDPI, vol. 16(6), pages 1-17, March.
    2. Djamila Rekioua & Khoudir Kakouche & Abdulrahman Babqi & Zahra Mokrani & Adel Oubelaid & Toufik Rekioua & Abdelghani Azil & Enas Ali & Ali H. Kasem Alaboudy & Saad A. Mohamed Abdelwahab, 2023. "Optimized Power Management Approach for Photovoltaic Systems with Hybrid Battery-Supercapacitor Storage," Sustainability, MDPI, vol. 15(19), pages 1-30, September.
    3. Loup-Noé Lévy & Jérémie Bosom & Guillaume Guerard & Soufian Ben Amor & Marc Bui & Hai Tran, 2022. "DevOps Model Appproach for Monitoring Smart Energy Systems," Energies, MDPI, vol. 15(15), pages 1-27, July.
    4. Ziad M. Ali & Martin Calasan & Shady H. E. Abdel Aleem & Francisco Jurado & Foad H. Gandoman, 2023. "Applications of Energy Storage Systems in Enhancing Energy Management and Access in Microgrids: A Review," Energies, MDPI, vol. 16(16), pages 1-41, August.
    5. Djamila Rekioua & Toufik Rekioua & Ahmed Elsanabary & Saad Mekhilef, 2023. "Power Management Control of an Autonomous Photovoltaic/Wind Turbine/Battery System," Energies, MDPI, vol. 16(5), pages 1-24, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, Abhishek & Deng, Yan & He, Xiangning & Singh, Arvind R. & Kumar, Praveen & Bansal, R.C. & Bettayeb, M. & Ghenai, C. & Naidoo, R.M., 2023. "Impact of demand side management approaches for the enhancement of voltage stability loadability and customer satisfaction index," Applied Energy, Elsevier, vol. 339(C).
    2. Tostado-Véliz, Marcos & Kamel, Salah & Hasanien, Hany M. & Turky, Rania A. & Jurado, Francisco, 2022. "Uncertainty-aware day-ahead scheduling of microgrids considering response fatigue: An IGDT approach," Applied Energy, Elsevier, vol. 310(C).
    3. Phani Raghav, L. & Seshu Kumar, R. & Koteswara Raju, D. & Singh, Arvind R., 2022. "Analytic Hierarchy Process (AHP) – Swarm intelligence based flexible demand response management of grid-connected microgrid," Applied Energy, Elsevier, vol. 306(PB).
    4. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    5. Masoud Dashtdar & Aymen Flah & Seyed Mohammad Sadegh Hosseinimoghadam & Hossam Kotb & Elżbieta Jasińska & Radomir Gono & Zbigniew Leonowicz & Michał Jasiński, 2022. "Optimal Operation of Microgrids with Demand-Side Management Based on a Combination of Genetic Algorithm and Artificial Bee Colony," Sustainability, MDPI, vol. 14(11), pages 1-26, May.
    6. José Luis Ruiz Duarte & Neng Fan, 2022. "Operation of a Power Grid with Embedded Networked Microgrids and Onsite Renewable Technologies," Energies, MDPI, vol. 15(7), pages 1-24, March.
    7. Nachat Nasser & Meghdad Fazeli & Ahmed A. Aboushady, 2022. "Buffered Microgrids with Modular Back-to-Back Converter Grid Interface," Energies, MDPI, vol. 15(21), pages 1-16, October.
    8. Ali M. Jasim & Basil H. Jasim & Habib Kraiem & Aymen Flah, 2022. "A Multi-Objective Demand/Generation Scheduling Model-Based Microgrid Energy Management System," Sustainability, MDPI, vol. 14(16), pages 1-28, August.
    9. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    10. Farhat Afzah Samoon & Ikhlaq Hussain & Sheikh Javed Iqbal, 2023. "ILA Optimisation Based Control for Enhancing DC Link Voltage with Seamless and Adaptive VSC Control in a PV-BES Based AC Microgrid," Energies, MDPI, vol. 16(21), pages 1-23, October.
    11. Emrani-Rahaghi, Pouria & Hashemi-Dezaki, Hamed & Ketabi, Abbas, 2023. "Efficient voltage control of low voltage distribution networks using integrated optimized energy management of networked residential multi-energy microgrids," Applied Energy, Elsevier, vol. 349(C).
    12. Dimitrios Trigkas & Chrysovalantou Ziogou & Spyros Voutetakis & Simira Papadopoulou, 2021. "Virtual Energy Storage in RES-Powered Smart Grids with Nonlinear Model Predictive Control," Energies, MDPI, vol. 14(4), pages 1-22, February.
    13. Jihed Hmad & Azeddine Houari & Allal El Moubarek Bouzid & Abdelhakim Saim & Hafedh Trabelsi, 2023. "A Review on Mode Transition Strategies between Grid-Connected and Standalone Operation of Voltage Source Inverters-Based Microgrids," Energies, MDPI, vol. 16(13), pages 1-41, June.
    14. Matija Kostelac & Lin Herenčić & Tomislav Capuder, 2022. "Planning and Operational Aspects of Individual and Clustered Multi-Energy Microgrid Options," Energies, MDPI, vol. 15(4), pages 1-17, February.
    15. Terlouw, Tom & AlSkaif, Tarek & Bauer, Christian & van Sark, Wilfried, 2019. "Optimal energy management in all-electric residential energy systems with heat and electricity storage," Applied Energy, Elsevier, vol. 254(C).
    16. Soheil Mohseni & Alan C. Brent & Daniel Burmester, 2020. "Community Resilience-Oriented Optimal Micro-Grid Capacity Expansion Planning: The Case of Totarabank Eco-Village, New Zealand," Energies, MDPI, vol. 13(15), pages 1-29, August.
    17. Felix Garcia-Torres & Ascension Zafra-Cabeza & Carlos Silva & Stephane Grieu & Tejaswinee Darure & Ana Estanqueiro, 2021. "Model Predictive Control for Microgrid Functionalities: Review and Future Challenges," Energies, MDPI, vol. 14(5), pages 1-26, February.
    18. Roth, Jonathan & Martin, Amory & Miller, Clayton & Jain, Rishee K., 2020. "SynCity: Using open data to create a synthetic city of hourly building energy estimates by integrating data-driven and physics-based methods," Applied Energy, Elsevier, vol. 280(C).
    19. Hammad Alnuman & Kuo-Hsien Hsia & Mohammadreza Askari Sepestanaki & Emad M. Ahmed & Saleh Mobayen & Ammar Armghan, 2023. "Design of Continuous Finite-Time Controller Based on Adaptive Tuning Approach for Disturbed Boost Converters," Mathematics, MDPI, vol. 11(7), pages 1-23, April.
    20. Giulietti, Monica & Le Coq, Chloé & Willems, Bert & Anaya, Karim, 2019. "Smart Consumers in the Internet of Energy : Flexibility Markets & Services from Distributed Energy Resources," Other publications TiSEM 2edb43b5-bbd6-487d-abdf-7, Tilburg University, School of Economics and Management.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:11:p:4125-:d:831304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.