IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i6p1534-d514473.html
   My bibliography  Save this article

Considering the Environmental Impacts of Bioenergy Technologies to Support German Energy Transition

Author

Listed:
  • Amarachi Kalu

    (Department of Geography, Ludwig Maximillian’s University, Luisenstraße 37, 80333 Munich, Germany)

  • Janja Vrzel

    (Department of Geography, Ludwig Maximillian’s University, Luisenstraße 37, 80333 Munich, Germany)

  • Sebastian Kolb

    (Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Chair of Energy Process Engineering, Fürther Straße 244f, 90429 Nuremberg, Germany)

  • Juergen Karl

    (Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Chair of Energy Process Engineering, Fürther Straße 244f, 90429 Nuremberg, Germany)

  • Philip Marzahn

    (Department of Geography, Ludwig Maximillian’s University, Luisenstraße 37, 80333 Munich, Germany)

  • Fabian Pfaffenberger

    (Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Chair of Communication Science, Findelgasse 7/9, 90402 Nuremberg, Germany)

  • Ralf Ludwig

    (Department of Geography, Ludwig Maximillian’s University, Luisenstraße 37, 80333 Munich, Germany)

Abstract

Clean energy for all, as listed in the United Nation’s SDG7, is a key component for sustainable environmental development. Therefore, it is imperative to uncover the environmental implications of alternative energy technologies. SustainableGAS project simulates different process chains for the substitution of natural gas with renewable energies in the German gas market. The project follows an interdisciplinary approach, taking into account techno-social and environmental variabilities. However, this research highlights the project results from the environmental perspective. So far, a detailed assessment of the environmental costs of alternative gas technologies with a focus on the process of energy transition has remained rare. Although such data constitute key inputs for decision-making, this study helps to bridge a substantial knowledge gap. Competing land-use systems are examined to secure central ecosystem services. To fulfill this obligation, an Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) serves as the modelling tool. InVEST assesses ecosystem services (ES) that are or may be affected by alternative bioenergy technologies. Spatially explicit model results include the water provisioning from the Water Yield Model (WYM), soil erosion and sedimentation described by the Sediment Delivery Ratio (SDR), and nutrient fluxes (N) in response to changing land use are obtained through the Nutrient Delivery Ratio (NDR). The detailed model results are finally extrapolated, which provides a comprehensive image of the environmental impacts associated with bioenergy expansion in Germany from our combination of unique Renewable Gas Plants (RGPs). The final result shows that nutrient load will reduce in southern Germany by the year 2050 compared to the reference state, and biomass use reduced by 46% crops.

Suggested Citation

  • Amarachi Kalu & Janja Vrzel & Sebastian Kolb & Juergen Karl & Philip Marzahn & Fabian Pfaffenberger & Ralf Ludwig, 2021. "Considering the Environmental Impacts of Bioenergy Technologies to Support German Energy Transition," Energies, MDPI, vol. 14(6), pages 1-19, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1534-:d:514473
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/6/1534/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/6/1534/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Strzalka, Rafal & Schneider, Dietrich & Eicker, Ursula, 2017. "Current status of bioenergy technologies in Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 801-820.
    2. Walston, Leroy J. & Li, Yudi & Hartmann, Heidi M. & Macknick, Jordan & Hanson, Aaron & Nootenboom, Chris & Lonsdorf, Eric & Hellmann, Jessica, 2021. "Modeling the ecosystem services of native vegetation management practices at solar energy facilities in the Midwestern United States," Ecosystem Services, Elsevier, vol. 47(C).
    3. Bagstad, Kenneth J. & Semmens, Darius J. & Waage, Sissel & Winthrop, Robert, 2013. "A comparative assessment of decision-support tools for ecosystem services quantification and valuation," Ecosystem Services, Elsevier, vol. 5(C), pages 27-39.
    4. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vera, Ivan & Wicke, Birka & Lamers, Patrick & Cowie, Annette & Repo, Anna & Heukels, Bas & Zumpf, Colleen & Styles, David & Parish, Esther & Cherubini, Francesco & Berndes, Göran & Jager, Henriette & , 2022. "Land use for bioenergy: Synergies and trade-offs between sustainable development goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ainhoa Gonzalez & Álvaro Enríquez-de-Salamanca, 2018. "Spatial Multi-Criteria Analysis in Environmental Assessment: A Review and Reflection on Benefits and Limitations," Journal of Environmental Assessment Policy and Management (JEAPM), World Scientific Publishing Co. Pte. Ltd., vol. 20(03), pages 1-24, September.
    2. Drakou, E.G. & Crossman, N.D. & Willemen, L. & Burkhard, B. & Palomo, I. & Maes, J. & Peedell, S., 2015. "A visualization and data-sharing tool for ecosystem service maps: Lessons learnt, challenges and the way forward," Ecosystem Services, Elsevier, vol. 13(C), pages 134-140.
    3. Alessio D’Auria & Pasquale De Toro & Nicola Fierro & Elisa Montone, 2018. "Integration between GIS and Multi-Criteria Analysis for Ecosystem Services Assessment: A Methodological Proposal for the National Park of Cilento, Vallo di Diano and Alburni (Italy)," Sustainability, MDPI, vol. 10(9), pages 1-25, September.
    4. Mayer, Alex & Jones, Kelly & Hunt, David & Manson, Robert & Carter Berry, Z. & Asbjornsen, Heidi & Wright, Timothy Max & Salcone, Jacob & Lopez Ramirez, Sergio & Ã vila-Foucat, Sophie & Von Thaden Uga, 2022. "Assessing ecosystem service outcomes from payments for hydrological services programs in Veracruz, Mexico: Future deforestation threats and spatial targeting," Ecosystem Services, Elsevier, vol. 53(C).
    5. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    6. Dong Chen & Rongrong Liu & Maoxian Zhou, 2023. "Delineation of Urban Growth Boundary Based on Habitat Quality and Carbon Storage: A Case Study of Weiyuan County in Gansu, China," Land, MDPI, vol. 12(5), pages 1-17, May.
    7. Ram Avtar & Apisai Vakacegu Rinamalo & Deha Agus Umarhadi & Ankita Gupta & Khaled Mohamed Khedher & Ali P. Yunus & Bhupendra P. Singh & Pankaj Kumar & Netrananda Sahu & Anjar Dimara Sakti, 2022. "Land Use Change and Prediction for Valuating Carbon Sequestration in Viti Levu Island, Fiji," Land, MDPI, vol. 11(8), pages 1-17, August.
    8. Moreno-Llorca, R. & Vaz, A.S. & Herrero, J. & Millares, A. & Bonet-García, F.J. & Alcaraz-Segura, D., 2020. "Multi-scale evolution of ecosystem services’ supply in Sierra Nevada (Spain): An assessment over the last half-century," Ecosystem Services, Elsevier, vol. 46(C).
    9. Mostafa Shaaban & Carmen Schwartz & Joseph Macpherson & Annette Piorr, 2021. "A Conceptual Model Framework for Mapping, Analyzing and Managing Supply–Demand Mismatches of Ecosystem Services in Agricultural Landscapes," Land, MDPI, vol. 10(2), pages 1-19, January.
    10. Brown, Melanie G. & Quinn, John E., 2018. "Zoning does not improve the availability of ecosystem services in urban watersheds. A case study from Upstate South Carolina, USA," Ecosystem Services, Elsevier, vol. 34(PB), pages 254-265.
    11. Agudelo, César Augusto Ruiz & Bustos, Sandra Liliana Hurtado & Moreno, Carmen Alicia Parrado, 2020. "Modeling interactions among multiple ecosystem services. A critical review," Ecological Modelling, Elsevier, vol. 429(C).
    12. Liu, Peng & Jiang, Shiwei & Zhao, Lianjun & Li, Yunxi & Zhang, Pingping & Zhang, Li, 2017. "What are the benefits of strictly protected nature reserves? Rapid assessment of ecosystem service values in Wanglang Nature Reserve, China," Ecosystem Services, Elsevier, vol. 26(PA), pages 70-78.
    13. Richard Yao & David Palmer & Barbara Hock & Duncan Harrison & Tim Payn & Juan Monge, 2019. "Forest Investment Framework as a Support Tool for the Sustainable Management of Planted Forests," Sustainability, MDPI, vol. 11(12), pages 1-22, June.
    14. Bargos, Fabiano Fernandes & Lamas, Wendell de Queiróz & Bilato, Gabriel Adam, 2018. "Computational tools and operational research for optimal design of co-generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 507-516.
    15. Warziniack, Travis & Sims, Charles & Haas, Jessica, 2019. "Fire and the joint production of ecosystem services: A spatial-dynamic optimization approach," Forest Policy and Economics, Elsevier, vol. 107(C), pages 1-1.
    16. Vardon, Michael & May, Steve & Keith, Heather & Burnett, Peter & Lindenmayer, David, 2019. "Accounting for ecosystem services – Lessons from Australia for its application and use in Oceania to achieve sustainable development," Ecosystem Services, Elsevier, vol. 39(C).
    17. Rasmussen, Laura Vang & Mertz, Ole & Christensen, Andreas E. & Danielsen, Finn & Dawson, Neil & Xaydongvanh, Pheang, 2016. "A combination of methods needed to assess the actual use of provisioning ecosystem services," Ecosystem Services, Elsevier, vol. 17(C), pages 75-86.
    18. Yu-Pin Lin & Wei-Chih Lin & Hsin-Yi Li & Yung-Chieh Wang & Chih-Chen Hsu & Wan-Yu Lien & Johnathen Anthony & Joy R. Petway, 2017. "Integrating Social Values and Ecosystem Services in Systematic Conservation Planning: A Case Study in Datuan Watershed," Sustainability, MDPI, vol. 9(5), pages 1-22, April.
    19. Stephen B. Stewart & Anthony P. O’Grady & Daniel S. Mendham & Greg S. Smith & Philip J. Smethurst, 2022. "Digital Tools for Quantifying the Natural Capital Benefits of Agroforestry: A Review," Land, MDPI, vol. 11(10), pages 1-32, September.
    20. Kenny, Daniel C. & Costanza, Robert & Dowsley, Tom & Jackson, Nichelle & Josol, Jairus & Kubiszewski, Ida & Narulla, Harkiran & Sese, Saioa & Sutanto, Anna & Thompson, Jonathan, 2019. "Australia's Genuine Progress Indicator Revisited (1962–2013)," Ecological Economics, Elsevier, vol. 158(C), pages 1-10.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1534-:d:514473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.