IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i5p1391-d509831.html
   My bibliography  Save this article

Development of Flexible Triboelectric Generators Based on Patterned Conductive Textile and PDMS Layers

Author

Listed:
  • Yeau-Ren Jeng

    (Department of Biomedical Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 701401, Taiwan
    Department of Mechanical Engineering, National Chung Cheng University, No. 168, Sec. 1, University Road, Chiayi 621301, Taiwan)

  • Andrew E. Mendy

    (Department of Mechanical Engineering, National Chung Cheng University, No. 168, Sec. 1, University Road, Chiayi 621301, Taiwan)

  • Chi-Tse Ko

    (Department of Mechatronic Engineering, National Taiwan Normal University, No. 162, Sec. 1, Ho-Ping E. Road, Taipei 106308, Taiwan)

  • Shih-Feng Tseng

    (Department of Mechanical Engineering, National Taipei University of Technology, No. 1, Sec. 3, Zhongxiao E. Road, Taipei 106344, Taiwan)

  • Chii-Rong Yang

    (Department of Mechatronic Engineering, National Taiwan Normal University, No. 162, Sec. 1, Ho-Ping E. Road, Taipei 106308, Taiwan)

Abstract

A triboelectric generator (TEG) is a simple coupling combined with triboelectrification and electrostatic induction, which can convert mechanical energy into electrical energy and have the potential for self-powered device application. In this study, TEGs are fabricated consisting of a conductive textile (CT) layer (a fabric woven with polyester and stainless steel) and a polydimethylsiloxane (PDMS) layer. The CT friction layer is also used as a conductive electrode and designed with various surface morphologies, including unpatterned, dots, and lines with 1 and 2 cm spacings. Experimental results show that the TEG with an unpatterned CT layer produces an output voltage of 54.6 V and an output current of 5.46 µA. The patterned surfaces increase the effective contact area and friction effect between the CT and PDMS layers and hence enhance the output voltage and current to 94.4 V and 9.44 µA. Compared to the unpatterned CT layer, the pattern use of 1 cm spaced lines, 2 cm spaced lines, and dots improves the output voltage and current by 1.73, 1.68, and 1.24 times, respectively. Moreover, the TEG with 1 cm spaced lines generates a high output power density of 181.9 mW/m 2 .

Suggested Citation

  • Yeau-Ren Jeng & Andrew E. Mendy & Chi-Tse Ko & Shih-Feng Tseng & Chii-Rong Yang, 2021. "Development of Flexible Triboelectric Generators Based on Patterned Conductive Textile and PDMS Layers," Energies, MDPI, vol. 14(5), pages 1-15, March.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1391-:d:509831
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/5/1391/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/5/1391/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Singh, Huidrom Hemojit & Khare, Neeraj, 2019. "Improved performance of ferroelectric nanocomposite flexible film based triboelectric nanogenerator by controlling surface morphology, polarizability, and hydrophobicity," Energy, Elsevier, vol. 178(C), pages 765-771.
    2. He, Jian & Fan, Xueming & Mu, Jiliang & Wang, Chao & Qian, Jichao & Li, Xiucheng & Hou, Xiaojuan & Geng, Wenping & Wang, Xiangdong & Chou, Xiujian, 2020. "3D full-space triboelectric-electromagnetic hybrid nanogenerator for high-efficient mechanical energy harvesting in vibration system," Energy, Elsevier, vol. 194(C).
    3. Mule, Anki Reddy & Dudem, Bhaskar & Yu, Jae Su, 2018. "High-performance and cost-effective triboelectric nanogenerators by sandpaper-assisted micropatterned polytetrafluoroethylene," Energy, Elsevier, vol. 165(PA), pages 677-684.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Armin Razmjoo & Mostafa Rezaei & Seyedali Mirjalili & Meysam Majidi Nezhad & Giuseppe Piras, 2021. "Development of Sustainable Energy Use with Attention to Fruitful Policy," Sustainability, MDPI, vol. 13(24), pages 1-17, December.
    2. Razmjoo, Armin & Mirjalili, Seyedali & Aliehyaei, Mehdi & Østergaard, Poul Alberg & Ahmadi, Abolfazl & Majidi Nezhad, Meysam, 2022. "Development of smart energy systems for communities: technologies, policies and applications," Energy, Elsevier, vol. 248(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Huai & Ouyang, Huajiang, 2021. "A capsule-structured triboelectric energy harvester with stick-slip vibration and vibro-impact," Energy, Elsevier, vol. 235(C).
    2. Yar, Adem, 2021. "High performance of multi-layered triboelectric nanogenerators for mechanical energy harvesting," Energy, Elsevier, vol. 222(C).
    3. Chang, Chih-Chang & Huang, Wei-Hao & Mai, Van-Phung & Tsai, Jia-Shiuan & Yang, Ruey-Jen, 2021. "Experimental investigation into energy harvesting of NaCl droplet flow over graphene supported by silicon dioxide," Energy, Elsevier, vol. 229(C).
    4. Wang, Yilong & Yang, Zhengbao & Cao, Dengqing, 2021. "On the offset distance of rotational piezoelectric energy harvesters," Energy, Elsevier, vol. 220(C).
    5. Patnam, Harishkumarreddy & Dudem, Bhaskar & Graham, Sontyana Adonijah & Yu, Jae Su, 2021. "High-performance and robust triboelectric nanogenerators based on optimal microstructured poly(vinyl alcohol) and poly(vinylidene fluoride) polymers for self-powered electronic applications," Energy, Elsevier, vol. 223(C).
    6. Byeong-Cheol Kang, & Choi, Hyeong-Jun & Park, Sang-Joon & Ha, Tae-Jun, 2021. "Wearable triboelectric nanogenerators with the reduced loss of triboelectric charges by using a hole transport layer of bar-printed single-wall carbon nanotube random networks," Energy, Elsevier, vol. 233(C).
    7. Ali Matin Nazar & King-James Idala Egbe & Azam Abdollahi & Mohammad Amin Hariri-Ardebili, 2021. "Triboelectric Nanogenerators for Energy Harvesting in Ocean: A Review on Application and Hybridization," Energies, MDPI, vol. 14(18), pages 1-33, September.
    8. Wei, Jianguang & Liang, Shuang & Zhang, Dong & Li, Jiangtao & Zhou, Runnan, 2023. "Frozen core experimental study on oil-water distribution characteristics at different stages of water flooding in low permeability oil reservoirs," Energy, Elsevier, vol. 278(PB).
    9. Jeong, Se Yeong & Hwang, Won Seop & Cho, Jae Yong & Jeong, Jae Chul & Ahn, Jung Hwan & Kim, Kyung Bum & Hong, Seong Do & Song, Gyeong Ju & Jeon, Deok Hwan & Sung, Tae Hyun, 2019. "Piezoelectric device operating as sensor and harvester to drive switching circuit in LED shoes," Energy, Elsevier, vol. 177(C), pages 87-93.
    10. Wang, Ru & Cui, Juan & Liu, Yabing & Liu, Dan & Du, Chunhui & Yan, Shubin & Zheng, Yongqiu & Xue, Chenyang, 2022. "Multi-pulse triboelectric nanogenerator based on micro-gap corona discharge for enhancement of output performance," Energy, Elsevier, vol. 244(PA).
    11. Zou, Donglin & Liu, Gaoyu & Rao, Zhushi & Cao, Junyi & Liao, Wei-Hsin, 2022. "Design of a high-performance piecewise bi-stable piezoelectric energy harvester," Energy, Elsevier, vol. 241(C).
    12. Yang, Xin & Lai, Siu-Kai & Wang, Chen & Wang, Jia-Mei & Ding, Hu, 2022. "On a spring-assisted multi-stable hybrid-integrated vibration energy harvester for ultra-low-frequency excitations," Energy, Elsevier, vol. 252(C).
    13. Lin Xu & Md Al Mahadi Hasan & Heting Wu & Ya Yang, 2021. "Electromagnetic–Triboelectric Hybridized Nanogenerators," Energies, MDPI, vol. 14(19), pages 1-27, September.
    14. Qian, Feng & Xu, Tian-Bing & Zuo, Lei, 2019. "Piezoelectric energy harvesting from human walking using a two-stage amplification mechanism," Energy, Elsevier, vol. 189(C).
    15. Singh, Huidrom Hemojit & Khare, Neeraj, 2019. "Improved performance of ferroelectric nanocomposite flexible film based triboelectric nanogenerator by controlling surface morphology, polarizability, and hydrophobicity," Energy, Elsevier, vol. 178(C), pages 765-771.
    16. Zhao, Chaoyang & Yang, Yaowen & Upadrashta, Deepesh & Zhao, Liya, 2021. "Design, modeling and experimental validation of a low-frequency cantilever triboelectric energy harvester," Energy, Elsevier, vol. 214(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1391-:d:509831. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.