IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i19p6079-d642026.html
   My bibliography  Save this article

Research on Machining Workshop Batch Scheduling Incorporating the Completion Time and Non-Processing Energy Consumption Considering Product Structure

Author

Listed:
  • Nailiang Li

    (Department of Industrial Engineering, School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

  • Caihong Feng

    (Department of Industrial Engineering, School of Mines, China University of Mining and Technology, Xuzhou 221116, China)

Abstract

Energy-saving scheduling is a well-known issue in the manufacturing system. The flexibility of the workshop increases the difficulty of scheduling. In the workshop schedule, considering the collaborative optimization of multi-level structure product production and energy consumption has certain practical significance. The process sequence of parts and components should be consistent with the assembly sequence. Additionally, the non-production energy consumption (NPEC) (such as the energy consumption of workpiece handling, equipment standby, and workpiece conversion) generated by the auxiliary machining operations, which make up the majority of the total energy consumption, should not be ignored. A sub-batch priority is set according to the upper and lower coupling relationship in the product structure. A bi-objective batch scheduling model that minimizes the total energy consumption and the total completion time is developed, and the multi-objective gray wolf optimizer (MOGWO) is employed as the solution to obtain the optimal schedule scheme. A case study is performed to demonstrate the potential possibilities concerning NPEC in regard to reducing the total energy consumption and to show the effectiveness of the algorithm. Compared with the traditional optimization model, the joint optimization of NPEC and PEC can reduce the energy consumption of standby and handling by 9.95% and 22.28%, respectively.

Suggested Citation

  • Nailiang Li & Caihong Feng, 2021. "Research on Machining Workshop Batch Scheduling Incorporating the Completion Time and Non-Processing Energy Consumption Considering Product Structure," Energies, MDPI, vol. 14(19), pages 1-26, September.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6079-:d:642026
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/19/6079/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/19/6079/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Miao, Di & Chen, Wei & Zhao, Wei & Demsas, Tekle, 2020. "Parameter estimation of PEM fuel cells employing the hybrid grey wolf optimization method," Energy, Elsevier, vol. 193(C).
    2. Xiaona Luan & Song Zhang & Jie Chen & Gang Li, 2019. "Energy modelling and energy saving strategy analysis of a machine tool during non-cutting status," International Journal of Production Research, Taylor & Francis Journals, vol. 57(14), pages 4451-4467, July.
    3. Jianguo Zhou & Xuejing Huo & Xiaolei Xu & Yushuo Li, 2019. "Forecasting the Carbon Price Using Extreme-Point Symmetric Mode Decomposition and Extreme Learning Machine Optimized by the Grey Wolf Optimizer Algorithm," Energies, MDPI, vol. 12(5), pages 1-22, March.
    4. Xiuli Wu & Xianli Shen & Qi Cui, 2018. "Multi-Objective Flexible Flow Shop Scheduling Problem Considering Variable Processing Time due to Renewable Energy," Sustainability, MDPI, vol. 10(3), pages 1-30, March.
    5. Chen Peng & Tao Peng & Yi Zhang & Renzhong Tang & Luoke Hu, 2018. "Minimising Non-Processing Energy Consumption and Tardiness Fines in a Mixed-Flow Shop," Energies, MDPI, vol. 11(12), pages 1-15, December.
    6. Jia, Shun & Yuan, Qinghe & Lv, Jingxiang & Liu, Ying & Ren, Dawei & Zhang, Zhongwei, 2017. "Therblig-embedded value stream mapping method for lean energy machining," Energy, Elsevier, vol. 138(C), pages 1081-1098.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shun Jia & Qingwen Yuan & Wei Cai & Qinghe Yuan & Conghu Liu & Jingxiang Lv & Zhongwei Zhang, 2018. "Establishment of an Improved Material-Drilling Power Model to Support Energy Management of Drilling Processes," Energies, MDPI, vol. 11(8), pages 1-16, August.
    2. Wei Sun & Junjian Zhang, 2020. "Carbon Price Prediction Based on Ensemble Empirical Mode Decomposition and Extreme Learning Machine Optimized by Improved Bat Algorithm Considering Energy Price Factors," Energies, MDPI, vol. 13(13), pages 1-22, July.
    3. Mohamed Abdel-Basset & Reda Mohamed & Victor Chang, 2021. "An Efficient Parameter Estimation Algorithm for Proton Exchange Membrane Fuel Cells," Energies, MDPI, vol. 14(21), pages 1-23, November.
    4. Hajo Terbrack & Thorsten Claus & Frank Herrmann, 2021. "Energy-Oriented Production Planning in Industry: A Systematic Literature Review and Classification Scheme," Sustainability, MDPI, vol. 13(23), pages 1-32, December.
    5. Acarer, Sercan & Uyulan, Çağlar & Karadeniz, Ziya Haktan, 2020. "Optimization of radial inflow wind turbines for urban wind energy harvesting," Energy, Elsevier, vol. 202(C).
    6. Murat Gunduz & Ayman Fahmi Naser, 2017. "Cost Based Value Stream Mapping as a Sustainable Construction Tool for Underground Pipeline Construction Projects," Sustainability, MDPI, vol. 9(12), pages 1-20, November.
    7. Jia, Shun & Cai, Wei & Liu, Conghu & Zhang, Zhongwei & Bai, Shuowei & Wang, Qiuyan & Li, Shuoshuo & Hu, Luoke, 2021. "Energy modeling and visualization analysis method of drilling processes in the manufacturing industry," Energy, Elsevier, vol. 228(C).
    8. Leilei Meng & Biao Zhang & Kaizhou Gao & Peng Duan, 2022. "An MILP Model for Energy-Conscious Flexible Job Shop Problem with Transportation and Sequence-Dependent Setup Times," Sustainability, MDPI, vol. 15(1), pages 1-14, December.
    9. Fathy, Ahmed & Babu, Thanikanti Sudhakar & Abdelkareem, Mohammad Ali & Rezk, Hegazy & Yousri, Dalia, 2022. "Recent approach based heterogeneous comprehensive learning Archimedes optimization algorithm for identifying the optimal parameters of different fuel cells," Energy, Elsevier, vol. 248(C).
    10. Neufeld, Janis S. & Schulz, Sven & Buscher, Udo, 2023. "A systematic review of multi-objective hybrid flow shop scheduling," European Journal of Operational Research, Elsevier, vol. 309(1), pages 1-23.
    11. Jun-Mao Liao & Ming-Jui Chang & Luh-Maan Chang, 2020. "Prediction of Air-Conditioning Energy Consumption in R&D Building Using Multiple Machine Learning Techniques," Energies, MDPI, vol. 13(7), pages 1-22, April.
    12. Andrzej Bożek, 2020. "Energy Cost-Efficient Task Positioning in Manufacturing Systems," Energies, MDPI, vol. 13(19), pages 1-21, September.
    13. Shun Jia & Shang Wang & Jingxiang Lv & Wei Cai & Na Zhang & Zhongwei Zhang & Shuowei Bai, 2021. "Multi-Objective Optimization of CNC Turning Process Parameters Considering Transient-Steady State Energy Consumption," Sustainability, MDPI, vol. 13(24), pages 1-23, December.
    14. Shuai Wang & Jizhuang Hui & Bin Zhu & Ying Liu, 2022. "Adaptive Genetic Algorithm Based on Fuzzy Reasoning for the Multilevel Capacitated Lot-Sizing Problem with Energy Consumption in Synchronizer Production," Sustainability, MDPI, vol. 14(9), pages 1-24, April.
    15. Jianguo Zhou & Qiqi Wang, 2021. "Forecasting Carbon Price with Secondary Decomposition Algorithm and Optimized Extreme Learning Machine," Sustainability, MDPI, vol. 13(15), pages 1-17, July.
    16. Araby Mahdy & Abdullah Shaheen & Ragab El-Sehiemy & Ahmed Ginidi & Saad F. Al-Gahtani, 2023. "Single- and Multi-Objective Optimization Frameworks of Shape Design of Tubular Linear Synchronous Motor," Energies, MDPI, vol. 16(5), pages 1-27, March.
    17. Xiaojie Xu & Yun Zhang, 2022. "Forecasting the total market value of a shares traded in the Shenzhen stock exchange via the neural network," Economics Bulletin, AccessEcon, vol. 42(3), pages 1266-1279.
    18. Ardamanbir Singh Sidhu & Sehijpal Singh & Raman Kumar & Danil Yurievich Pimenov & Khaled Giasin, 2021. "Prioritizing Energy-Intensive Machining Operations and Gauging the Influence of Electric Parameters: An Industrial Case Study," Energies, MDPI, vol. 14(16), pages 1-39, August.
    19. Chiuhsiang Joe Lin & Rio Prasetyo Lukodono, 2021. "Sustainable Human–Robot Collaboration Based on Human Intention Classification," Sustainability, MDPI, vol. 13(11), pages 1-26, May.
    20. Zhongwei Zhang & Lihui Wu & Tao Peng & Shun Jia, 2018. "An Improved Scheduling Approach for Minimizing Total Energy Consumption and Makespan in a Flexible Job Shop Environment," Sustainability, MDPI, vol. 11(1), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6079-:d:642026. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.