IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i15p4589-d604006.html
   My bibliography  Save this article

A Comprehensive Survey on Different Control Strategies and Applications of Active Power Filters for Power Quality Improvement

Author

Listed:
  • Soumya Ranjan Das

    (Department of Electrical Engineering, GIET Bhubaneswar, Odisha 752060, India)

  • Prakash Kumar Ray

    (Department of Electrical Engineering, CET Bhubaneswar, Odisha 751003, India)

  • Arun Kumar Sahoo

    (Department of Electrical Engineering, IIIT Bhubaneswar, Odisha 751001, India)

  • Somula Ramasubbareddy

    (Department of Information Technology, VNR Vignana Jyothi Institute of Engineering and Technology, Hyderabad 500090, India)

  • Thanikanti Sudhakar Babu

    (Department of Electrical and Electronics Engineering, Chaitanya Bharathi Institute of Technology (CBIT), Hyderabad 500075, India)

  • Nallapaneni Manoj Kumar

    (School of Energy and Environment, City University of Hong Kong, Kowloon, Hong Kong)

  • Rajvikram Madurai Elavarasan

    (Clean and Resilient Energy Systems (CARES) Laboratory, Texas A&M University, Galveston, TX 77553, USA)

  • Lucian Mihet-Popa

    (Faculty of Engineering, Østfold University College, NO-1757 Halden, Norway)

Abstract

Power quality (PQ) has become an important topic in today’s power system scenario. PQ issues are raised not only in normal three-phase systems but also with the incorporation of different distributed generations (DGs), including renewable energy sources, storage systems, and other systems like diesel generators, fuel cells, etc. The prevalence of these issues comes from the non-linear features and rapid changing of power electronics devices, such as switch-mode converters for adjustable speed drives and diode or thyristor rectifiers. The wide use of these fast switching devices in the utility system leads to an increase in disturbances associated with harmonics and reactive power. The occurrence of PQ disturbances in turn creates several unwanted effects on the utility system. Therefore, many researchers are working on the enhancement of PQ using different custom power devices (CPDs). In this work, the authors highlight the significance of the PQ in the utility network, its effect, and its solution, using different CPDs, such as passive, active, and hybrid filters. Further, the authors point out several compensation strategies, including reference signal generation and gating signal strategies. In addition, this paper also presents the role of the active power filter (APF) in different DG systems. Some technical and economic considerations and future developments are also discussed in this literature. For easy reference, a volume of journals of more than 140 publications on this particular subject is reported. The effectiveness of this research work will boost researchers’ ability to select proper control methodology and compensation strategy for various applications of APFs for improving PQ.

Suggested Citation

  • Soumya Ranjan Das & Prakash Kumar Ray & Arun Kumar Sahoo & Somula Ramasubbareddy & Thanikanti Sudhakar Babu & Nallapaneni Manoj Kumar & Rajvikram Madurai Elavarasan & Lucian Mihet-Popa, 2021. "A Comprehensive Survey on Different Control Strategies and Applications of Active Power Filters for Power Quality Improvement," Energies, MDPI, vol. 14(15), pages 1-32, July.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4589-:d:604006
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/15/4589/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/15/4589/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Juntao Fei & Shenglei Zhang & Jian Zhou, 2012. "Adaptive Sliding Mode Control of Single-Phase Shunt Active Power Filter," Mathematical Problems in Engineering, Hindawi, vol. 2012, pages 1-22, October.
    2. Muhammad Ammirrul Atiqi Mohd Zainuri & Mohd Amran Mohd Radzi & Azura Che Soh & Norman Mariun & Nasrudin Abd Rahim & Shahrooz Hajighorbani, 2016. "Fundamental Active Current Adaptive Linear Neural Networks for Photovoltaic Shunt Active Power Filters," Energies, MDPI, vol. 9(6), pages 1-20, May.
    3. Büyük, Mehmet & Tan, Adnan & Tümay, Mehmet & Bayındır, K. Çağatay, 2016. "Topologies, generalized designs, passive and active damping methods of switching ripple filters for voltage source inverter: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 46-69.
    4. Cheng-I Chen & Chien-Kai Lan & Yeong-Chin Chen & Chung-Hsien Chen, 2019. "Adaptive Frequency-Based Reference Compensation Current Control Strategy of Shunt Active Power Filter for Unbalanced Nonlinear Loads," Energies, MDPI, vol. 12(16), pages 1-14, August.
    5. Van den Broeck, Giel & Stuyts, Jeroen & Driesen, Johan, 2018. "A critical review of power quality standards and definitions applied to DC microgrids," Applied Energy, Elsevier, vol. 229(C), pages 281-288.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Krzysztof Sozanski & Pawel Szczesniak, 2023. "Advanced Control Algorithm for Three-Phase Shunt Active Power Filter Using Sliding DFT," Energies, MDPI, vol. 16(3), pages 1-17, February.
    2. Abdallah El Ghaly & Mohamad Tarnini & Nazih Moubayed & Khaled Chahine, 2022. "A Filter-Less Time-Domain Method for Reference Signal Extraction in Shunt Active Power Filters," Energies, MDPI, vol. 15(15), pages 1-16, July.
    3. Abdullah M. Noman & Abdulaziz Alkuhayli & Abdullrahman A. Al-Shamma’a & Khaled E. Addoweesh, 2022. "Hybrid MLI Topology Using Open-End Windings for Active Power Filter Applications," Energies, MDPI, vol. 15(17), pages 1-21, September.
    4. Khaled Chahine & Mohamad Tarnini & Nazih Moubayed & Abdallah El Ghaly, 2023. "Power Quality Enhancement of Grid-Connected Renewable Systems Using a Matrix-Pencil-Based Active Power Filter," Sustainability, MDPI, vol. 15(1), pages 1-19, January.
    5. Marcin Maciążek, 2022. "Active Power Filters and Power Quality," Energies, MDPI, vol. 15(22), pages 1-4, November.
    6. Andrej Brandis & Denis Pelin & Zvonimir Klaić & Damir Šljivac, 2022. "Identification of Even-Order Harmonics Injected by Semiconverter into the AC Grid," Energies, MDPI, vol. 15(5), pages 1-18, February.
    7. Mbungu, Nsilulu T. & Ismail, Ali A. & AlShabi, Mohammad & Bansal, Ramesh C. & Elnady, A. & Hamid, Abdul Kadir, 2023. "Control and estimation techniques applied to smart microgrids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    8. Rui Hou & Pengfei Wang & Jian Wu & Dianguo Xu, 2022. "Research on Oscillation Suppression Methods in Shunt Active Power Filter System," Energies, MDPI, vol. 15(9), pages 1-19, April.
    9. Dawid Buła & Dariusz Grabowski & Marcin Maciążek, 2022. "A Review on Optimization of Active Power Filter Placement and Sizing Methods," Energies, MDPI, vol. 15(3), pages 1-35, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Deng Xu & Yong Long, 2019. "The Impact of Government Subsidy on Renewable Microgrid Investment Considering Double Externalities," Sustainability, MDPI, vol. 11(11), pages 1-15, June.
    2. Hallemans, L. & Ravyts, S. & Govaerts, G. & Fekriasl, S. & Van Tichelen, P. & Driesen, J., 2022. "A stepwise methodology for the design and evaluation of protection strategies in LVDC microgrids," Applied Energy, Elsevier, vol. 310(C).
    3. Gerber, Daniel L. & Ghatpande, Omkar A. & Nazir, Moazzam & Heredia, Willy G. Bernal & Feng, Wei & Brown, Richard E., 2022. "Energy and power quality measurement for electrical distribution in AC and DC microgrid buildings," Applied Energy, Elsevier, vol. 308(C).
    4. Chatterjee, Shantanu & Kumar, Prashant & Chatterjee, Saibal, 2018. "A techno-commercial review on grid connected photovoltaic system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2371-2397.
    5. Moshammed Nishat Tasnim & Tofael Ahmed & Monjila Afrin Dorothi & Shameem Ahmad & G. M. Shafiullah & S. M. Ferdous & Saad Mekhilef, 2023. "Voltage-Oriented Control-Based Three-Phase, Three-Leg Bidirectional AC–DC Converter with Improved Power Quality for Microgrids," Energies, MDPI, vol. 16(17), pages 1-32, August.
    6. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2022. "Solar Energy-Powered Battery Electric Vehicle charging stations: Current development and future prospect review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).
    7. Jason David & Philip Ciufo & Sean Elphick & Duane Robinson, 2022. "Preliminary Evaluation of the Impact of Sustained Overvoltage on Low Voltage Electronics-Based Equipment," Energies, MDPI, vol. 15(4), pages 1-16, February.
    8. Tanzim Meraj, Sheikh & Zaihar Yahaya, Nor & Hasan, Kamrul & Hossain Lipu, M.S. & Madurai Elavarasan, Rajvikram & Hussain, Aini & Hannan, M.A. & Muttaqi, Kashem M., 2022. "A filter less improved control scheme for active/reactive energy management in fuel cell integrated grid system with harmonic reduction ability," Applied Energy, Elsevier, vol. 312(C).
    9. Hirwa, Jusse & Zolan, Alexander & Becker, William & Flamand, Tülay & Newman, Alexandra, 2023. "Optimizing design and dispatch of a resilient renewable energy microgrid for a South African hospital," Applied Energy, Elsevier, vol. 348(C).
    10. Wajahat Ullah Khan Tareen & Muhammad Aamir & Saad Mekhilef & Mutsuo Nakaoka & Mehdi Seyedmahmoudian & Ben Horan & Mudasir Ahmed Memon & Nauman Anwar Baig, 2018. "Mitigation of Power Quality Issues Due to High Penetration of Renewable Energy Sources in Electric Grid Systems Using Three-Phase APF/STATCOM Technologies: A Review," Energies, MDPI, vol. 11(6), pages 1-41, June.
    11. Yap Hoon & Mohd Amran Mohd Radzi & Mohd Khair Hassan & Nashiren Farzilah Mailah, 2017. "A Self-Tuning Filter-Based Adaptive Linear Neuron Approach for Operation of Three-Level Inverter-Based Shunt Active Power Filters under Non-Ideal Source Voltage Conditions," Energies, MDPI, vol. 10(5), pages 1-28, May.
    12. Dawid Buła & Dariusz Grabowski & Andrzej Lange & Marcin Maciążek & Marian Pasko, 2020. "Long- and Short-Term Comparative Analysis of Renewable Energy Sources," Energies, MDPI, vol. 13(14), pages 1-18, July.
    13. Yap Hoon & Mohd Amran Mohd Radzi & Mohd Khair Hassan & Nashiren Farzilah Mailah, 2017. "Control Algorithms of Shunt Active Power Filter for Harmonics Mitigation: A Review," Energies, MDPI, vol. 10(12), pages 1-29, December.
    14. Christoffer Fjellstedt & Johan Forslund & Karin Thomas, 2023. "Experimental Investigation of the Frequency Response of an LC-Filter and Power Transformer for Grid Connection," Energies, MDPI, vol. 16(15), pages 1-12, August.
    15. dos Santos Neto, Pedro J. & Barros, Tárcio A.S. & Silveira, Joao P.C. & Ruppert Filho, Ernesto & Vasquez, Juan C. & Guerrero, Josep M., 2020. "Power management techniques for grid-connected DC microgrids: A comparative evaluation," Applied Energy, Elsevier, vol. 269(C).
    16. Gomes, Camilo C. & Cupertino, Allan F. & Pereira, Heverton A., 2018. "Damping techniques for grid-connected voltage source converters based on LCL filter: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 116-135.
    17. Qiyu Li & Hongwei Zhou & Jiansong Zhang & Shengdun Zhao & Jingfeng Lu, 2020. "A Virtual Negative Resistor Based Common Mode Current Resonance Suppression Method for Three-Level Grid-Tied Inverter with Discontinuous PWM," Energies, MDPI, vol. 13(7), pages 1-16, April.
    18. Helko E. van den Brom & Ronald van Leeuwen & Gerasimos Maroulis & Samad Shah & Laurens Mackay, 2023. "Power Quality Measurement Results for a Configurable Urban Low-Voltage DC Microgrid," Energies, MDPI, vol. 16(12), pages 1-18, June.
    19. Emmanuel Hernández-Mayoral & Manuel Madrigal-Martínez & Jesús D. Mina-Antonio & Reynaldo Iracheta-Cortez & Jesús A. Enríquez-Santiago & Omar Rodríguez-Rivera & Gregorio Martínez-Reyes & Edwin Mendoza-, 2023. "A Comprehensive Review on Power-Quality Issues, Optimization Techniques, and Control Strategies of Microgrid Based on Renewable Energy Sources," Sustainability, MDPI, vol. 15(12), pages 1-53, June.
    20. Hasan Erteza Gelani & Faizan Dastgeer & Mashood Nasir & Sidra Khan & Josep M. Guerrero, 2021. "AC vs. DC Distribution Efficiency: Are We on the Right Path?," Energies, MDPI, vol. 14(13), pages 1-26, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:15:p:4589-:d:604006. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.