IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3472-d380525.html
   My bibliography  Save this article

Gassing Tendency of Fresh and Aged Mineral Oil and Ester Fluids under Electrical and Thermal Fault Conditions

Author

Listed:
  • Luc Loiselle

    (Research Chair on the Aging of Power Network Infrastructure (ViAHT), Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada)

  • U. Mohan Rao

    (Research Chair on the Aging of Power Network Infrastructure (ViAHT), Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada)

  • Issouf Fofana

    (Research Chair on the Aging of Power Network Infrastructure (ViAHT), Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada)

Abstract

Operational factors are known to affect the health of an in-service power transformer and to reduce the capabilities and readiness for energy transmission and distribution. Hence, it is important to understand the degradation rate and corresponding behavioral aspects of different insulating fluids under various fault conditions. In this article, the behavior of mineral oil and two environmentally friendly fluids (a synthetic and a natural ester) are reported under arcing, partial discharges, and thermal fault conditions. Arcing, partial discharges and thermal faults are simulated by 100 repeated breakdowns, top oil electrical discharge of 9 kV for five hours, and local hotspots respectively by using different laboratory-based setups. Some physicochemical properties along with the gassing tendency of fresh and aged insulating liquids are investigated after the different fault conditions. UV spectroscopy and turbidity measurements are used to report the degradation behavior and dissolved gas analysis is used to understand the gassing tendency. The changes in the degradation rate of oil under the influence of various faults and the corresponding dissolved gasses generated are analyzed. The fault gas generations are diagnosed by Duval’s triangle and pentagon methods for mineral and non-mineral oils. It is inferred that; the gassing tendency of the dielectric fluids evolve with respect to the degradation rate and is dependent on the intensity and type of fault.

Suggested Citation

  • Luc Loiselle & U. Mohan Rao & Issouf Fofana, 2020. "Gassing Tendency of Fresh and Aged Mineral Oil and Ester Fluids under Electrical and Thermal Fault Conditions," Energies, MDPI, vol. 13(13), pages 1-15, July.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3472-:d:380525
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3472/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3472/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rafiq, M. & Lv, Y.Z. & Zhou, Y. & Ma, K.B. & Wang, W. & Li, C.R. & Wang, Q., 2015. "Use of vegetable oils as transformer oils – a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 308-324.
    2. Chenmeng Xiang & Quan Zhou & Jian Li & Qingdan Huang & Haoyong Song & Zhaotao Zhang, 2016. "Comparison of Dissolved Gases in Mineral and Vegetable Insulating Oils under Typical Electrical and Thermal Faults," Energies, MDPI, vol. 9(5), pages 1-22, April.
    3. L. Loiselle & U. Mohan Rao & I. Fofana, 2020. "Influence of Aging on Oil Degradation and Gassing Tendency for Mineral oil and Synthetic Ester under Low Energy Discharge Electrical Faults," Energies, MDPI, vol. 13(3), pages 1-12, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shen, Zijia & Wang, Feipeng & Wang, Zhiqing & Li, Jian, 2021. "A critical review of plant-based insulating fluids for transformer: 30-year development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    2. Yachao Wang & Feipeng Wang & Jian Li & Suning Liang & Jinghan Zhou, 2018. "Electronic Properties of Typical Molecules and the Discharge Mechanism of Vegetable and Mineral Insulating Oils," Energies, MDPI, vol. 11(3), pages 1-13, February.
    3. Issouf Fofana & Yazid Hadjadj, 2018. "Power Transformer Diagnostics, Monitoring and Design Features," Energies, MDPI, vol. 11(12), pages 1-5, November.
    4. Qiu, Qinpan & Zhang, Jingwen & Yang, Lu & Zhang, Jinzhu & Chen, Binghao & Tang, Chao, 2021. "Simulation of the diffusion behavior of water molecules in palm oil and mineral oil at different temperatures," Renewable Energy, Elsevier, vol. 174(C), pages 909-917.
    5. Cristina Méndez & Cristian Olmo & Ismael Antolín & Alfredo Ortiz & Carlos J. Renedo, 2024. "Analysing the Suitability of Using Different Biodegradable Fluids for Power Transformers with Thermally Upgraded Paper," Sustainability, MDPI, vol. 16(8), pages 1-18, April.
    6. Wiktor Kunikowski & Pawel Rozga & Bartlomiej Pasternak & Jakub Staniewski & Filip Stuchala & Konrad Strzelecki, 2024. "Impact of Electrode Distance in a Quasi-Uniform Model Electrode System on Lightning Impulse Breakdown Voltage in Various Insulating Liquids," Energies, MDPI, vol. 17(4), pages 1-18, February.
    7. Yuzhen Lv & Muhammad Rafiq & Chengrong Li & Bingliang Shan, 2017. "Study of Dielectric Breakdown Performance of Transformer Oil Based Magnetic Nanofluids," Energies, MDPI, vol. 10(7), pages 1-21, July.
    8. Jingxin Zou & Weigen Chen & Fu Wan & Zhou Fan & Lingling Du, 2016. "Raman Spectral Characteristics of Oil-Paper Insulation and Its Application to Ageing Stage Assessment of Oil-Immersed Transformers," Energies, MDPI, vol. 9(11), pages 1-14, November.
    9. Karatas, Mehmet & Bicen, Yunus, 2022. "Nanoparticles for next-generation transformer insulating fluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    10. Chan, Chung-Hung & Tang, Sook Wah & Mohd, Noor Khairin & Lim, Wen Huei & Yeong, Shoot Kian & Idris, Zainab, 2018. "Tribological behavior of biolubricant base stocks and additives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 145-157.
    11. Belén García & Alfredo Ortiz & Carlos Renedo & Diego Fernando García & Andrés Montero, 2021. "Use Performance and Management of Biodegradable Fluids as Transformer Insulation," Energies, MDPI, vol. 14(19), pages 1-18, October.
    12. Fabio Henrique Pereira & Francisco Elânio Bezerra & Shigueru Junior & Josemir Santos & Ivan Chabu & Gilberto Francisco Martha de Souza & Fábio Micerino & Silvio Ikuyo Nabeta, 2018. "Nonlinear Autoregressive Neural Network Models for Prediction of Transformer Oil-Dissolved Gas Concentrations," Energies, MDPI, vol. 11(7), pages 1-12, June.
    13. Andrei Manea & Teodora Gorjanu & Andreea Lazeanu & Laurentiu Marius Dumitran, 2022. "Effect of Electrical Accelerated Aging on DC Resistivity of Mineral Oil Used in Power Transformers," Energies, MDPI, vol. 16(1), pages 1-12, December.
    14. Chen, Rui & Qiu, Qinpan & Peng, Xiao & Tang, Chao, 2023. "Surface modified h-BN towards enhanced electrical properties and thermal conductivity of natural ester insulating oil," Renewable Energy, Elsevier, vol. 204(C), pages 185-196.
    15. Mariprasath, T. & Kirubakaran, V., 2016. "A critical review on the characteristics of alternating liquid dielectrics and feasibility study on pongamia pinnata oil as liquid dielectrics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 784-799.
    16. Kosse, Elijah & Devadoss, Stephen, 2016. "Welfare Analysis of the U.S.-Mexican Tomato Suspension Agreement," 2017 Annual Meeting, February 4-7, 2017, Mobile, Alabama 252726, Southern Agricultural Economics Association.
    17. Lefeng Cheng & Tao Yu, 2018. "Dissolved Gas Analysis Principle-Based Intelligent Approaches to Fault Diagnosis and Decision Making for Large Oil-Immersed Power Transformers: A Survey," Energies, MDPI, vol. 11(4), pages 1-69, April.
    18. Bing Zeng & Jiang Guo & Wenqiang Zhu & Zhihuai Xiao & Fang Yuan & Sixu Huang, 2019. "A Transformer Fault Diagnosis Model Based On Hybrid Grey Wolf Optimizer and LS-SVM," Energies, MDPI, vol. 12(21), pages 1-18, November.
    19. Mardhiah Hayati Abdul Hamid & Mohd Taufiq Ishak & Nur Sabrina Suhaimi & Jaafar Adnan & Nazrul Fariq Makmor & Nurul Izzatul Akma Katim & Rahisham Abd Rahman, 2021. "Lightning Impulse Breakdown Voltage of Rice Bran Oil for Transformer Application," Energies, MDPI, vol. 14(16), pages 1-22, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3472-:d:380525. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.