IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i23p4558-d292379.html
   My bibliography  Save this article

Prediction of Contact Angle of Nanofluids by Single-Phase Approaches

Author

Listed:
  • Nur Çobanoğlu

    (Graduate School of Natural and Applied Sciences, İzmir Kâtip Çelebi University, 35620 İzmir, Turkey
    Institut für Luft- und Kältetechnik gGmbH Dresden, 01309 Dresden, Germany)

  • Ziya Haktan Karadeniz

    (Department of Mechanical Engineering, İzmir Kâtip Çelebi University, 35620 İzmir, Turkey)

  • Patrice Estellé

    (Univ Rennes, LGCGM, EA3913, F-35000 Rennes, France)

  • Raul Martínez-Cuenca

    (Departamento de Ingeniería Mecánica y Construcción, Universitat Jaume I, 12071 Castelló de la Plana, Spain)

  • Matthias H. Buschmann

    (Institut für Luft- und Kältetechnik gGmbH Dresden, 01309 Dresden, Germany)

Abstract

Wettability is the ability of the liquid to contact with the solid surface at the surrounding fluid and its degree is defined by contact angle (CA), which is calculated with balance between adhesive and cohesive forces on droplet surface. Thermophysical properties of the droplet, the forces acting on the droplet, atmosphere surrounding the droplet and the substrate surface are the main parameters affecting on CA. With nanofluids (NF), nanoparticle concentration and size and shape can modify the contact angle and thus wettability. This study investigates the validity of single-phase CA correlations for several nanofluids with different types of nanoparticles dispersed in water. Geometrical parameters of sessile droplet (height of the droplet, wetting radius and radius of curvature at the apex) are used in the tested correlations, which are based on force balance acting on the droplet surface, energy balance, spherical dome approach and empirical expression, respectively. It is shown that single-phase models can be expressed in terms of Bond number, the non-dimensional droplet volume and two geometrical similarity simplexes. It is demonstrated that they can be used successfully to predict CA of dilute nanofluids’ at ambient conditions. Besides evaluation of CA, droplet shape is also well predicted for all nanofluid samples with ±5% error.

Suggested Citation

  • Nur Çobanoğlu & Ziya Haktan Karadeniz & Patrice Estellé & Raul Martínez-Cuenca & Matthias H. Buschmann, 2019. "Prediction of Contact Angle of Nanofluids by Single-Phase Approaches," Energies, MDPI, vol. 12(23), pages 1-16, November.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4558-:d:292379
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/23/4558/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/23/4558/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yaroslav Grosu & Luis González-Fernández & Udayashankar Nithiyanantham & Abdessamad Faik, 2019. "Wettability Control for Correct Thermophysical Properties Determination of Molten Salts and Their Nanofluids," Energies, MDPI, vol. 12(19), pages 1-13, October.
    2. Estellé, Patrice & Cabaleiro, David & Żyła, Gawel & Lugo, Luis & Murshed, S.M. Sohel, 2018. "Current trends in surface tension and wetting behavior of nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 931-944.
    3. David Cabaleiro & Samah Hamze & Filippo Agresti & Patrice Estellé & Simona Barison & Laura Fedele & Sergio Bobbo, 2019. "Dynamic Viscosity, Surface Tension and Wetting Behavior Studies of Paraffin–in–Water Nano–Emulsions," Energies, MDPI, vol. 12(17), pages 1-19, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Patrice Estellé & Leonor Hernández López & Matthias H. Buschmann, 2020. "Special Issue of the 1st International Conference on Nanofluids (ICNf19)," Energies, MDPI, vol. 13(9), pages 1-4, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Patrice Estellé & Leonor Hernández López & Matthias H. Buschmann, 2020. "Special Issue of the 1st International Conference on Nanofluids (ICNf19)," Energies, MDPI, vol. 13(9), pages 1-4, May.
    2. Samah Hamze & David Cabaleiro & Dominique Bégin & Alexandre Desforges & Thierry Maré & Brigitte Vigolo & Luis Lugo & Patrice Estellé, 2020. "Volumetric Properties and Surface Tension of Few-Layer Graphene Nanofluids Based on a Commercial Heat Transfer Fluid," Energies, MDPI, vol. 13(13), pages 1-18, July.
    3. Madruga, Santiago & Mendoza, Carolina, 2022. "Introducing a new concept for enhanced micro-energy harvesting of thermal fluctuations through the Marangoni effect," Applied Energy, Elsevier, vol. 306(PA).
    4. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    5. Jacek Fal & Omid Mahian & Gaweł Żyła, 2018. "Nanofluids in the Service of High Voltage Transformers: Breakdown Properties of Transformer Oils with Nanoparticles, a Review," Energies, MDPI, vol. 11(11), pages 1-46, October.
    6. David Cabaleiro & Samah Hamze & Filippo Agresti & Patrice Estellé & Simona Barison & Laura Fedele & Sergio Bobbo, 2019. "Dynamic Viscosity, Surface Tension and Wetting Behavior Studies of Paraffin–in–Water Nano–Emulsions," Energies, MDPI, vol. 12(17), pages 1-19, August.
    7. Skrbek, Kryštof & Bartůněk, Vilém & Sedmidubský, David, 2022. "Molten salt-based nanocomposites for thermal energy storage: Materials, preparation techniques and properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    8. Cabaleiro, D. & Agresti, F. & Fedele, L. & Barison, S. & Hermida-Merino, C. & Losada-Barreiro, S. & Bobbo, S. & Piñeiro, M.M., 2022. "Review on phase change material emulsions for advanced thermal management: Design, characterization and thermal performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    9. Yunus Tansu Aksoy & Yanshen Zhu & Pinar Eneren & Erin Koos & Maria Rosaria Vetrano, 2020. "The Impact of Nanofluids on Droplet/Spray Cooling of a Heated Surface: A Critical Review," Energies, MDPI, vol. 14(1), pages 1-33, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:23:p:4558-:d:292379. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.