IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i8p1077-d105829.html
   My bibliography  Save this article

Real-Time Analysis of a Modified State Observer for Sensorless Induction Motor Drive Used in Electric Vehicle Applications

Author

Listed:
  • Mohan Krishna S.

    (Department of Electrical and Electronics Engineering, MITS (Madanapalle Institute of Technology and Science), Madanapalle 517325, AP, India)

  • Febin Daya J.L.

    (School of Electrical Engineering, VIT University—Chennai Campus, Chennai 600 048, India)

  • Sanjeevikumar Padmanaban

    (Department of Electrical and Electronics Engineering Science, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa)

  • Lucian Mihet-Popa

    (Faculty of Engineering, Østfold University College, Kobberslagerstredet 5, 1671 Kråkeroy, Norway)

Abstract

The purpose of this work is to present an adaptive sliding mode Luenberger state observer with improved disturbance rejection capability and better tracking performance under dynamic conditions. The sliding hyperplane is altered by incorporating the estimated disturbance torque with the stator currents. In addition, the effects of parameter detuning on the speed convergence are observed and compared with the conventional disturbance rejection mechanism. The entire drive system is first built in the Simulink environment. Then, the Simulink model is integrated with real-time (RT)-Lab blocksets and implemented in a relatively new real-time environment using OP4500 real-time simulator. Real-time simulation and testing platforms have succeeded offline simulation and testing tools due to their reduced development time. The real-time results validate the improvement in the proposed state observer and also correspond to the performance of the actual physical model.

Suggested Citation

  • Mohan Krishna S. & Febin Daya J.L. & Sanjeevikumar Padmanaban & Lucian Mihet-Popa, 2017. "Real-Time Analysis of a Modified State Observer for Sensorless Induction Motor Drive Used in Electric Vehicle Applications," Energies, MDPI, vol. 10(8), pages 1-23, July.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1077-:d:105829
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/8/1077/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/8/1077/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Beguenane, Rachid & Ouhrouche, Mohand A. & Trzynadlowski, Andrzej M., 2006. "A new scheme for sensorless induction motor control drives operating in low speed region," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 71(2), pages 109-120.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sergio Saponara & Lucian Mihet-Popa, 2019. "Energy Storage Systems and Power Conversion Electronics for E-Transportation and Smart Grid," Energies, MDPI, vol. 12(4), pages 1-9, February.
    2. Kang Miao Tan & Vigna K. Ramachandaramurthy & Jia Ying Yong & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg, 2017. "Minimization of Load Variance in Power Grids—Investigation on Optimal Vehicle-to-Grid Scheduling," Energies, MDPI, vol. 10(11), pages 1-21, November.
    3. Mohan Krishna Srinivasan & Febin Daya John Lionel & Umashankar Subramaniam & Frede Blaabjerg & Rajvikram Madurai Elavarasan & G. M. Shafiullah & Irfan Khan & Sanjeevikumar Padmanaban, 2020. "Real-Time Processor-in-Loop Investigation of a Modified Non-Linear State Observer Using Sliding Modes for Speed Sensorless Induction Motor Drive in Electric Vehicles," Energies, MDPI, vol. 13(16), pages 1-22, August.
    4. Eklas Hossain & Ron Perez & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Frede Blaabjerg & Vigna K. Ramachandaramurthy, 2017. "Sliding Mode Controller and Lyapunov Redesign Controller to Improve Microgrid Stability: A Comparative Analysis with CPL Power Variation," Energies, MDPI, vol. 10(12), pages 1-24, November.
    5. Fuad Un-Noor & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Mohammad Nurunnabi Mollah & Eklas Hossain, 2017. "A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development," Energies, MDPI, vol. 10(8), pages 1-84, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brahmi, Jemaa & Krichen, Lotfi & Ouali, Abderrazak, 2009. "A comparative study between three sensorless control strategies for PMSG in wind energy conversion system," Applied Energy, Elsevier, vol. 86(9), pages 1565-1573, September.
    2. Bensiali, N. & Etien, E. & Benalia, N., 2015. "Convergence analysis of back-EMF MRAS observers used in sensorless control of induction motor drives," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 115(C), pages 12-23.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:8:p:1077-:d:105829. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.