IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i4p449-d94702.html
   My bibliography  Save this article

Enhancement of Power System Stability Using a Novel Power System Stabilizer with Large Critical Gain

Author

Listed:
  • Ziquan Liu

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Wei Yao

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Jinyu Wen

    (State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

Abstract

Power system stabilizers (PSSs) are widely used for suppressing low frequency oscillations in practical power systems. However, according to the requirement of the “guide for setting test of power system stabilizer” of China, PSS gain is limited to no more than 1/3 of its critical gain. As a result, PSSs may not provide enough damping to the inter-area mode oscillations. Through analyzing the Heffron-Phillips (H-P) model of the generator with PSS, it is found that exciter mode will become unstable when PSS exceeds its critical gain. This exciter mode is formed by the natural characteristic of the exciter-PSS loop. To address this problem, a novel PSS with a parallel component added to the conventional PSS is proposed to improve its critical gain. Therefore, large gain can be chosen for the proposed PSS to meet the critical gain requirements of the guide and provide enough damping to the inter-area modes simultaneously. Simulation results on the Ximeng coal power station of China verify the effectiveness of the proposed PSS.

Suggested Citation

  • Ziquan Liu & Wei Yao & Jinyu Wen, 2017. "Enhancement of Power System Stability Using a Novel Power System Stabilizer with Large Critical Gain," Energies, MDPI, vol. 10(4), pages 1-15, April.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:449-:d:94702
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/4/449/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/4/449/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xiaohan Shi & Shaorong Wang & Wei Yao & Asad Waqar & Wenping Zuo & Yuejin Tang, 2015. "Mechanism Analysis and Experimental Validation of Employing Superconducting Magnetic Energy Storage to Enhance Power System Stability," Energies, MDPI, vol. 8(1), pages 1-26, January.
    2. Guowei Cai & Deyou Yang & Cheng Liu, 2013. "Adaptive Wide-Area Damping Control Scheme for Smart Grids with Consideration of Signal Time Delay," Energies, MDPI, vol. 6(9), pages 1-18, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Adrian Nocoń & Stefan Paszek, 2023. "A Comprehensive Review of Power System Stabilizers," Energies, MDPI, vol. 16(4), pages 1-32, February.
    2. Xingbao Ju & Ping Zhao & Haishun Sun & Wei Yao & Jinyu Wen, 2017. "Nonlinear Synergetic Governor Controllers for Steam Turbine Generators to Enhance Power System Stability," Energies, MDPI, vol. 10(8), pages 1-16, July.
    3. Antonio T. Alexandridis, 2019. "Studying State Convergence of Input-to-State Stable Systems with Applications to Power System Analysis," Energies, MDPI, vol. 13(1), pages 1-24, December.
    4. Aliyu Sabo & Noor Izzri Abdul Wahab & Mohammad Lutfi Othman & Mai Zurwatul Ahlam Mohd Jaffar & Hakan Acikgoz & Hamzeh Beiranvand, 2020. "Application of Neuro-Fuzzy Controller to Replace SMIB and Interconnected Multi-Machine Power System Stabilizers," Sustainability, MDPI, vol. 12(22), pages 1-42, November.
    5. Michał Izdebski & Robert Małkowski & Piotr Miller, 2022. "New Performance Indices for Power System Stabilizers," Energies, MDPI, vol. 15(24), pages 1-23, December.
    6. Haris E. Psillakis & Antonio T. Alexandridis, 2020. "Coordinated Excitation and Static Var Compensator Control with Delayed Feedback Measurements in SGIB Power Systems," Energies, MDPI, vol. 13(9), pages 1-18, May.
    7. Jong Ju Kim & June Ho Park, 2021. "A Novel Structure of a Power System Stabilizer for Microgrids," Energies, MDPI, vol. 14(4), pages 1-33, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tao Zhou & Zhong Chen & Siqi Bu & Haoran Tang & Yi Liu, 2018. "Eigen-Analysis Considering Time-Delay and Data-Loss of WAMS and ITS Application to WADC Design Based on Damping Torque Analysis," Energies, MDPI, vol. 11(11), pages 1-15, November.
    2. Lei Chen & Hongkun Chen & Jun Yang & Yanjuan Yu & Kaiwei Zhen & Yang Liu & Li Ren, 2017. "Coordinated Control of Superconducting Fault Current Limiter and Superconducting Magnetic Energy Storage for Transient Performance Enhancement of Grid-Connected Photovoltaic Generation System," Energies, MDPI, vol. 10(1), pages 1-23, January.
    3. Kwan-Shik Shim & Seon-Ju Ahn & Joon-Ho Choi, 2017. "Synchronization of Low-Frequency Oscillation in Power Systems," Energies, MDPI, vol. 10(4), pages 1-11, April.
    4. Francesco Bonavolontà & Luigi Pio Di Noia & Davide Lauria & Annalisa Liccardo & Salvatore Tessitore, 2019. "An Optimized HT-Based Method for the Analysis of Inter-Area Oscillations on Electrical Systems," Energies, MDPI, vol. 12(15), pages 1-22, July.
    5. Kwan-Shik Shim & Seon-Ju Ahn & Sang-Yun Yun & Joon-Ho Choi, 2017. "Analysis of Low Frequency Oscillation Using the Multi-Interval Parameter Estimation Method on a Rolling Blackout in the KEPCO System," Energies, MDPI, vol. 10(4), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:4:p:449-:d:94702. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.