IDEAS home Printed from https://ideas.repec.org/a/gam/jdataj/v7y2022i6p82-d841210.html
   My bibliography  Save this article

Dataset for Detecting the Electrical Behavior of Photovoltaic Panels from RGB Images

Author

Listed:
  • Juan-Pablo Villegas-Ceballos

    (Departamento de Electrónica y Telecomunicaciones, Instituto Tecnológico Metropolitano, Medellín 050015, Colombia)

  • Mateo Rico-Garcia

    (Facultad de Ingeniería, Institución Universitaria Pascual Bravo, Calle 73 No. 73A 226, Medellín 050034, Colombia)

  • Carlos Andres Ramos-Paja

    (Facultad de Minas, Universidad Nacional de Colombia, Carrera 80 No. 65-223, Medellín 050041, Colombia)

Abstract

The dynamic reconfiguration and maximum power point tracking in large-scale photovoltaic (PV) systems require a large number of voltage and current sensors. In particular, the reconfiguration process requires a pair of voltage/current sensors for each panel, which introduces costs, increases size and reduces the reliability of the installation. A suitable solution for reducing the number of sensors is to adopt image-based solutions to estimate the electrical characteristics of the PV panels, but the lack of reliable data with large diversity of irradiance and shading conditions is a major problem in this topic. Therefore, this paper presents a dataset correlating RGB images and electrical data of PV panels with different irradiance and shading conditions; moreover, the dataset also provides complementary weather data and additional image characteristics to support the training of estimation models. In particular, the dataset was designed to support the design of image-based estimators of electrical data, which could be used to replace large arrays of sensors. The dataset was captured during 70 days distributed between 2020 and 2021, generating 5211 images and registers. The paper also describes the measurement platform used to collect the data, which will help to replicate the experiments in different geographical locations.

Suggested Citation

  • Juan-Pablo Villegas-Ceballos & Mateo Rico-Garcia & Carlos Andres Ramos-Paja, 2022. "Dataset for Detecting the Electrical Behavior of Photovoltaic Panels from RGB Images," Data, MDPI, vol. 7(6), pages 1-12, June.
  • Handle: RePEc:gam:jdataj:v:7:y:2022:i:6:p:82-:d:841210
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2306-5729/7/6/82/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2306-5729/7/6/82/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Daniel Gonzalez Montoya & Juan David Bastidas-Rodriguez & Luz Adriana Trejos-Grisales & Carlos Andres Ramos-Paja & Giovanni Petrone & Giovanni Spagnuolo, 2018. "A Procedure for Modeling Photovoltaic Arrays under Any Configuration and Shading Conditions," Energies, MDPI, vol. 11(4), pages 1-17, March.
    2. Roberto Pierdicca & Marina Paolanti & Andrea Felicetti & Fabio Piccinini & Primo Zingaretti, 2020. "Automatic Faults Detection of Photovoltaic Farms: solAIr, a Deep Learning-Based System for Thermal Images," Energies, MDPI, vol. 13(24), pages 1-17, December.
    3. Malof, Jordan M. & Bradbury, Kyle & Collins, Leslie M. & Newell, Richard G., 2016. "Automatic detection of solar photovoltaic arrays in high resolution aerial imagery," Applied Energy, Elsevier, vol. 183(C), pages 229-240.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Müller, Jonas & Trutnevyte, Evelina, 2020. "Spatial projections of solar PV installations at subnational level: Accuracy testing of regression models," Applied Energy, Elsevier, vol. 265(C).
    2. Konstantinos Ioannou & Dimitrios Myronidis, 2021. "Automatic Detection of Photovoltaic Farms Using Satellite Imagery and Convolutional Neural Networks," Sustainability, MDPI, vol. 13(9), pages 1-15, May.
    3. Yagli, Gokhan Mert & Yang, Dazhi & Gandhi, Oktoviano & Srinivasan, Dipti, 2020. "Can we justify producing univariate machine-learning forecasts with satellite-derived solar irradiance?," Applied Energy, Elsevier, vol. 259(C).
    4. Jeisson Vélez-Sánchez & Juan David Bastidas-Rodríguez & Carlos Andrés Ramos-Paja & Daniel González Montoya & Luz Adriana Trejos-Grisales, 2019. "A Non-Invasive Procedure for Estimating the Exponential Model Parameters of Bypass Diodes in Photovoltaic Modules," Energies, MDPI, vol. 12(2), pages 1-20, January.
    5. Mariana Durango-Flórez & Daniel González-Montoya & Luz Adriana Trejos-Grisales & Carlos Andres Ramos-Paja, 2022. "PV Array Reconfiguration Based on Genetic Algorithm for Maximum Power Extraction and Energy Impact Analysis," Sustainability, MDPI, vol. 14(7), pages 1-14, March.
    6. Mao, Hongzhi & Chen, Xie & Luo, Yongqiang & Deng, Jie & Tian, Zhiyong & Yu, Jinghua & Xiao, Yimin & Fan, Jianhua, 2023. "Advances and prospects on estimating solar photovoltaic installation capacity and potential based on satellite and aerial images," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    7. Marcela Bindzarova Gergelova & Slavomir Labant & Stefan Kuzevic & Zofia Kuzevicova & Henrieta Pavolova, 2020. "Identification of Roof Surfaces from LiDAR Cloud Points by GIS Tools: A Case Study of Lučenec, Slovakia," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    8. Ben Qi & Jingang Liang & Jiejuan Tong, 2023. "Fault Diagnosis Techniques for Nuclear Power Plants: A Review from the Artificial Intelligence Perspective," Energies, MDPI, vol. 16(4), pages 1-27, February.
    9. Fabio Giussani & Eric Wilczynski & Claudio Zandonella Callegher & Giovanni Dalle Nogare & Cristian Pozza & Antonio Novelli & Simon Pezzutto, 2024. "Use of Machine Learning Techniques on Aerial Imagery for the Extraction of Photovoltaic Data within the Urban Morphology," Sustainability, MDPI, vol. 16(5), pages 1-16, February.
    10. Mohamed Benghanem & Adel Mellit & Chourouk Moussaoui, 2023. "Embedded Hybrid Model (CNN–ML) for Fault Diagnosis of Photovoltaic Modules Using Thermographic Images," Sustainability, MDPI, vol. 15(10), pages 1-20, May.
    11. Li, Kangping & Wang, Fei & Mi, Zengqiang & Fotuhi-Firuzabad, Mahmoud & Duić, Neven & Wang, Tieqiang, 2019. "Capacity and output power estimation approach of individual behind-the-meter distributed photovoltaic system for demand response baseline estimation," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    12. Gianfranco Di Lorenzo & Erika Stracqualursi & Leonardo Micheli & Salvatore Celozzi & Rodolfo Araneo, 2022. "Prognostic Methods for Photovoltaic Systems’ Underperformance and Degradation: Status, Perspectives, and Challenges," Energies, MDPI, vol. 15(17), pages 1-6, September.
    13. Mayer, Kevin & Rausch, Benjamin & Arlt, Marie-Louise & Gust, Gunther & Wang, Zhecheng & Neumann, Dirk & Rajagopal, Ram, 2022. "3D-PV-Locator: Large-scale detection of rooftop-mounted photovoltaic systems in 3D," Applied Energy, Elsevier, vol. 310(C).
    14. Luz Adriana Trejos-Grisales & Juan David Bastidas-Rodríguez & Carlos Andrés Ramos-Paja, 2020. "Mathematical Model for Regular and Irregular PV Arrays with Improved Calculation Speed," Sustainability, MDPI, vol. 12(24), pages 1-28, December.
    15. Ahmed Al Mansur & Md. Ruhul Amin & Kazi Khairul Islam, 2019. "Performance Comparison of Mismatch Power Loss Minimization Techniques in Series-Parallel PV Array Configurations," Energies, MDPI, vol. 12(5), pages 1-21, March.
    16. Chen, Qi & Li, Xinyuan & Zhang, Zhengjia & Zhou, Chao & Guo, Zhiling & Liu, Zhengguang & Zhang, Haoran, 2023. "Remote sensing of photovoltaic scenarios: Techniques, applications and future directions," Applied Energy, Elsevier, vol. 333(C).
    17. Yin, Hui & Zhou, Kaile, 2022. "Performance evaluation of China's photovoltaic poverty alleviation project using machine learning and satellite images," Utilities Policy, Elsevier, vol. 76(C).
    18. Tan, Hongjun & Guo, Zhiling & Zhang, Haoran & Chen, Qi & Lin, Zhenjia & Chen, Yuntian & Yan, Jinyue, 2023. "Enhancing PV panel segmentation in remote sensing images with constraint refinement modules," Applied Energy, Elsevier, vol. 350(C).
    19. Li, Binghui & Feng, Cong & Siebenschuh, Carlo & Zhang, Rui & Spyrou, Evangelia & Krishnan, Venkat & Hobbs, Benjamin F. & Zhang, Jie, 2022. "Sizing ramping reserve using probabilistic solar forecasts: A data-driven method," Applied Energy, Elsevier, vol. 313(C).
    20. Bilal Taghezouit & Fouzi Harrou & Cherif Larbes & Ying Sun & Smail Semaoui & Amar Hadj Arab & Salim Bouchakour, 2022. "Intelligent Monitoring of Photovoltaic Systems via Simplicial Empirical Models and Performance Loss Rate Evaluation under LabVIEW: A Case Study," Energies, MDPI, vol. 15(21), pages 1-30, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jdataj:v:7:y:2022:i:6:p:82-:d:841210. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.