IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v14y2024i4p548-d1367129.html
   My bibliography  Save this article

Crop Classification Combining Object-Oriented Method and Random Forest Model Using Unmanned Aerial Vehicle (UAV) Multispectral Image

Author

Listed:
  • Hui Deng

    (College of Geography and Planning, Chengdu University of Technology, Chengdu 610059, China)

  • Wenjiang Zhang

    (College of Geography and Planning, Chengdu University of Technology, Chengdu 610059, China)

  • Xiaoqian Zheng

    (School of Finance, Fujian Business University, Fuzhou 350016, China)

  • Houxi Zhang

    (Forestry College, Fujian Agriculture and Forestry University, Fuzhou 350028, China)

Abstract

The accurate and timely identification of crops holds paramount significance for effective crop management and yield estimation. Unmanned aerial vehicle (UAV), with their superior spatial and temporal resolution compared to satellite-based remote sensing, offer a novel solution for precise crop identification. In this study, we evaluated a methodology that integrates object-oriented method and random forest (RF) algorithm for crop identification using multispectral UAV images. The process involved a multiscale segmentation algorithm, utilizing the optimal segmentation scale determined by Estimation of Scale Parameter 2 (ESP2). Eight classification schemes (S1–S8) were then developed by incorporating index (INDE), textural (GLCM), and geometric (GEOM) features based on the spectrum (SPEC) features of segmented objects. The best-trained RF model was established through three steps: feature selection, parameter tuning, and model training. Subsequently, we determined the feature importance for different classification schemes and generated a prediction map of vegetation for the entire study area based on the best-trained RF model. Our results revealed that S5 (SPEC + GLCM + INDE) outperformed others, achieving an impressive overall accuracy (OA) and kappa coefficient of 92.76% and 0.92, respectively, whereas S4 (SPEC + GEOM) exhibited the lowest performance. Notably, geometric features negatively impacted classification accuracy, while the other three feature types positively contributed. The accuracy of ginger, luffa, and sweet potato was consistently lower across most schemes, likely due to their unique colors and shapes, posing challenges for effective discrimination based solely on spectrum, index, and texture features. Furthermore, our findings highlighted that the most crucial feature was the INDE feature, followed by SPEC and GLCM, with GEOM being the least significant. For the optimal scheme (S5), the top 20 most important features comprised 10 SPEC, 7 INDE, and 3 GLCM features. In summary, our proposed method, combining object-oriented and RF algorithms based on multispectral UAV images, demonstrated high classification accuracy for crops. This research provides valuable insights for the accurate identification of various crops, serving as a reference for future advancements in agricultural technology and crop management strategies.

Suggested Citation

  • Hui Deng & Wenjiang Zhang & Xiaoqian Zheng & Houxi Zhang, 2024. "Crop Classification Combining Object-Oriented Method and Random Forest Model Using Unmanned Aerial Vehicle (UAV) Multispectral Image," Agriculture, MDPI, vol. 14(4), pages 1-17, March.
  • Handle: RePEc:gam:jagris:v:14:y:2024:i:4:p:548-:d:1367129
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/14/4/548/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/14/4/548/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Khan, Nasir M. & Rastoskuev, Victor V. & Sato, Y. & Shiozawa, S., 2005. "Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators," Agricultural Water Management, Elsevier, vol. 77(1-3), pages 96-109, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Romeu Gerardo & Isabel P. de Lima, 2022. "Sentinel-2 Satellite Imagery-Based Assessment of Soil Salinity in Irrigated Rice Fields in Portugal," Agriculture, MDPI, vol. 12(9), pages 1-20, September.
    2. Min Ma & Yi Hao & Qingchun Huang & Yongxin Liu & Liancun Xiu & Qi Gao, 2024. "Soil Salinity Estimation by 3D Spectral Space Optimization and Deep Soil Investigation in the Songnen Plain, Northeast China," Sustainability, MDPI, vol. 16(5), pages 1-26, March.
    3. Mohamed Elhedi Gharsallah & Hamouda Aichi & Talel Stambouli & Zouhair Ben Rabah & Habib Ben Hassine, 2022. "Assessment and mapping of soil salinity using electromagnetic induction and Landsat 8 OLI remote sensing data in an irrigated olive orchard under semi-arid conditions," Soil and Water Research, Czech Academy of Agricultural Sciences, vol. 17(1), pages 15-28.
    4. Zixuan Zhang & Beibei Niu & Xinju Li & Xingjian Kang & Zhenqi Hu, 2022. "Estimation and Dynamic Analysis of Soil Salinity Based on UAV and Sentinel-2A Multispectral Imagery in the Coastal Area, China," Land, MDPI, vol. 11(12), pages 1-21, December.
    5. Jiawen Hou & Mao Ye, 2022. "Effects of Dynamic Changes of Soil Moisture and Salinity on Plant Community in the Bosten Lake Basin," Sustainability, MDPI, vol. 14(21), pages 1-13, October.
    6. Hesham M. Aboelsoud & Mohamed A. E. AbdelRahman & Ahmed M. S. Kheir & Mona S. M. Eid & Khalil A. Ammar & Tamer H. Khalifa & Antonio Scopa, 2022. "Quantitative Estimation of Saline-Soil Amelioration Using Remote-Sensing Indices in Arid Land for Better Management," Land, MDPI, vol. 11(7), pages 1-19, July.
    7. Ramos, Tiago B. & Castanheira, Nádia & Oliveira, Ana R. & Paz, Ana Marta & Darouich, Hanaa & Simionesei, Lucian & Farzamian, Mohammad & Gonçalves, Maria C., 2020. "Soil salinity assessment using vegetation indices derived from Sentinel-2 multispectral data. application to Lezíria Grande, Portugal," Agricultural Water Management, Elsevier, vol. 241(C).
    8. Hamideh Nouri & Sattar Chavoshi Borujeni & Sina Alaghmand & Sharolyn J. Anderson & Paul C. Sutton & Somayeh Parvazian & Simon Beecham, 2018. "Soil Salinity Mapping of Urban Greenery Using Remote Sensing and Proximal Sensing Techniques; The Case of Veale Gardens within the Adelaide Parklands," Sustainability, MDPI, vol. 10(8), pages 1-14, August.
    9. Billal Hossen & Helmut Yabar & Md Jamal Faruque, 2022. "Exploring the Potential of Soil Salinity Assessment through Remote Sensing and GIS: Case Study in the Coastal Rural Areas of Bangladesh," Land, MDPI, vol. 11(10), pages 1-18, October.
    10. Yasin ul Haq & Muhammad Shahbaz & H. M. Shahzad Asif & Ali Al-Laith & Wesam H. Alsabban, 2023. "Spatial Mapping of Soil Salinity Using Machine Learning and Remote Sensing in Kot Addu, Pakistan," Sustainability, MDPI, vol. 15(17), pages 1-19, August.
    11. Shuoyang Li & Guiyu Yang & Cui Chang & Hao Wang & Hongling Zhang & Na Zhang & Zhigong Peng & Yaomingqi Song, 2024. "Remote Sensing Inversion of Salinization Degree Distribution and Analysis of Its Influencing Factors in an Arid Irrigated District," Land, MDPI, vol. 13(4), pages 1-18, March.
    12. Achivir Stella Yawe & Changlai Xiao & Oluwafemi Adewole Adeyeye & Mingjun Liu & Xiaoya Feng & Xiujuan Liang, 2022. "Spatio-Temporal Evolution of the Ecological Environment in a Typical Semi-Arid Region of Northeast China," Sustainability, MDPI, vol. 15(1), pages 1-19, December.
    13. Azamat Suleymanov & Ilyusya Gabbasova & Mikhail Komissarov & Ruslan Suleymanov & Timur Garipov & Iren Tuktarova & Larisa Belan, 2023. "Random Forest Modeling of Soil Properties in Saline Semi-Arid Areas," Agriculture, MDPI, vol. 13(5), pages 1-11, April.
    14. Tharani Gopalakrishnan & Lalit Kumar, 2020. "Modeling and Mapping of Soil Salinity and its Impact on Paddy Lands in Jaffna Peninsula, Sri Lanka," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    15. Yingxuan Ma & Nigara Tashpolat, 2023. "Current Status and Development Trend of Soil Salinity Monitoring Research in China," Sustainability, MDPI, vol. 15(7), pages 1-25, March.
    16. Iqra Farooq & Shabir Ahmed Bangroo & Owais Bashir & Tajamul Islam Shah & Ajaz A. Malik & Asif M. Iqbal & Syed Sheraz Mahdi & Owais Ali Wani & Nageena Nazir & Asim Biswas, 2022. "Comparison of Random Forest and Kriging Models for Soil Organic Carbon Mapping in the Himalayan Region of Kashmir," Land, MDPI, vol. 11(12), pages 1-15, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:14:y:2024:i:4:p:548-:d:1367129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.