IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v45y2009i3p434-445.html
   My bibliography  Save this article

An effective genetic algorithm for the fleet size and mix vehicle routing problems

Author

Listed:
  • Liu, Shuguang
  • Huang, Weilai
  • Ma, Huiming

Abstract

This paper studies the fleet size and mix vehicle routing problem (FSMVRP), in which the fleet is heterogeneous and its composition to be determined. We design and implement a genetic algorithm (GA) based heuristic. On a set of twenty benchmark problems it reaches the best-known solution 14 times and finds one new best solution. It also provides a competitive performance in terms of average solution.

Suggested Citation

  • Liu, Shuguang & Huang, Weilai & Ma, Huiming, 2009. "An effective genetic algorithm for the fleet size and mix vehicle routing problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 45(3), pages 434-445, May.
  • Handle: RePEc:eee:transe:v:45:y:2009:i:3:p:434-445
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554508001324
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lai, David S.W. & Caliskan Demirag, Ozgun & Leung, Janny M.Y., 2016. "A tabu search heuristic for the heterogeneous vehicle routing problem on a multigraph," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 86(C), pages 32-52.
    2. Liu, Ran & Jiang, Zhibin, 2012. "The close–open mixed vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 220(2), pages 349-360.
    3. Oscar Dominguez & Angel A. Juan & Barry Barrios & Javier Faulin & Alba Agustin, 2016. "Using biased randomization for solving the two-dimensional loading vehicle routing problem with heterogeneous fleet," Annals of Operations Research, Springer, vol. 236(2), pages 383-404, January.
    4. Puca Huachi Vaz Penna & Anand Subramanian & Luiz Satoru Ochi & Thibaut Vidal & Christian Prins, 2019. "A hybrid heuristic for a broad class of vehicle routing problems with heterogeneous fleet," Annals of Operations Research, Springer, vol. 273(1), pages 5-74, February.
    5. Low, Chinyao & Chang, Chien-Min & Li, Rong-Kwei & Huang, Chia-Ling, 2014. "Coordination of production scheduling and delivery problems with heterogeneous fleet," International Journal of Production Economics, Elsevier, vol. 153(C), pages 139-148.
    6. Xiaoxia Huang & Liying Song, 2018. "An emergency logistics distribution routing model for unexpected events," Annals of Operations Research, Springer, vol. 269(1), pages 223-239, October.
    7. Oscar Dominguez & Angel Juan & Barry Barrios & Javier Faulin & Alba Agustin, 2016. "Using biased randomization for solving the two-dimensional loading vehicle routing problem with heterogeneous fleet," Annals of Operations Research, Springer, vol. 236(2), pages 383-404, January.
    8. Hao Zhang & Yan Cui & Hepu Deng & Shuxian Cui & Huijia Mu, 2021. "An Improved Genetic Algorithm for the Optimal Distribution of Fresh Products under Uncertain Demand," Mathematics, MDPI, vol. 9(18), pages 1-18, September.
    9. Tang, Jiafu & Yu, Yang & Li, Jia, 2015. "An exact algorithm for the multi-trip vehicle routing and scheduling problem of pickup and delivery of customers to the airport," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 73(C), pages 114-132.
    10. Coelho, V.N. & Grasas, A. & Ramalhinho, H. & Coelho, I.M. & Souza, M.J.F. & Cruz, R.C., 2016. "An ILS-based algorithm to solve a large-scale real heterogeneous fleet VRP with multi-trips and docking constraints," European Journal of Operational Research, Elsevier, vol. 250(2), pages 367-376.
    11. Liu, Shuguang, 2013. "A hybrid population heuristic for the heterogeneous vehicle routing problems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 54(C), pages 67-78.
    12. Salhi, Said & Wassan, Niaz & Hajarat, Mutaz, 2013. "The Fleet Size and Mix Vehicle Routing Problem with Backhauls: Formulation and Set Partitioning-based Heuristics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 56(C), pages 22-35.
    13. Vidal, Thibaut & Crainic, Teodor Gabriel & Gendreau, Michel & Prins, Christian, 2014. "Implicit depot assignments and rotations in vehicle routing heuristics," European Journal of Operational Research, Elsevier, vol. 237(1), pages 15-28.
    14. Subramanian, Anand & Penna, Puca Huachi Vaz & Uchoa, Eduardo & Ochi, Luiz Satoru, 2012. "A hybrid algorithm for the Heterogeneous Fleet Vehicle Routing Problem," European Journal of Operational Research, Elsevier, vol. 221(2), pages 285-295.
    15. Koç, Çağrı & Bektaş, Tolga & Jabali, Ola & Laporte, Gilbert, 2016. "Thirty years of heterogeneous vehicle routing," European Journal of Operational Research, Elsevier, vol. 249(1), pages 1-21.
    16. Tu, Wei & Fang, Zhixiang & Li, Qingquan & Shaw, Shih-Lung & Chen, BiYu, 2014. "A bi-level Voronoi diagram-based metaheuristic for a large-scale multi-depot vehicle routing problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 61(C), pages 84-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:45:y:2009:i:3:p:434-445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.