Advanced Search
MyIDEAS: Login

Dynamic prediction of traffic volume through Kalman filtering theory

Contents:

Author Info

  • Okutani, Iwao
  • Stephanedes, Yorgos J.
Registered author(s):

    Abstract

    Two models employing Kalman filtering theory are proposed for predicting short-term traffic volume. Prediction parameters are improved using the most recent prediction error and better volume prediction on a link is achieved by taking into account data from a number of links. Based on data collected from a street network in Nagoya City, average prediction error is found to be less than 9% and maximum error less than 30%. The new models perform substantially (up to 80%) better than UTCS-2.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V99-466FHV5-Y/2/184d55211d2fc16b8de77ec801fa15d3
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Transportation Research Part B: Methodological.

    Volume (Year): 18 (1984)
    Issue (Month): 1 (February)
    Pages: 1-11

    as in new window
    Handle: RePEc:eee:transb:v:18:y:1984:i:1:p:1-11

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description

    Order Information:
    Postal: http://www.elsevier.com/wps/find/supportfaq.cws_home/regional
    Web: https://shop.elsevier.com/order?id=548&ref=548_01_ooc_1&version=01

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Xing, Tao & Zhou, Xuesong & Taylor, Jeffrey, 2013. "Designing heterogeneous sensor networks for estimating and predicting path travel time dynamics: An information-theoretic modeling approach," Transportation Research Part B: Methodological, Elsevier, vol. 57(C), pages 66-90.
    2. Lederman, Roger & Wynter, Laura, 2011. "Real-time traffic estimation using data expansion," Transportation Research Part B: Methodological, Elsevier, vol. 45(7), pages 1062-1079, August.
    3. Yildirimoglu, Mehmet & Geroliminis, Nikolas, 2013. "Experienced travel time prediction for congested freeways," Transportation Research Part B: Methodological, Elsevier, vol. 53(C), pages 45-63.
    4. Simonelli, Fulvio & Marzano, Vittorio & Papola, Andrea & Vitiello, Iolanda, 2012. "A network sensor location procedure accounting for o–d matrix estimate variability," Transportation Research Part B: Methodological, Elsevier, vol. 46(10), pages 1624-1638.
    5. Dongjoo Park & Laurence Rilett & Byron Gajewski & Clifford Spiegelman & Changho Choi, 2009. "Identifying optimal data aggregation interval sizes for link and corridor travel time estimation and forecasting," Transportation, Springer, vol. 36(1), pages 77-95, January.
    6. Xi Zou & David Levinson, 2006. "Detecting the Breakdown of Traffic," Working Papers 000034, University of Minnesota: Nexus Research Group.
    7. Dia, Hussein, 2001. "An object-oriented neural network approach to short-term traffic forecasting," European Journal of Operational Research, Elsevier, vol. 131(2), pages 253-261, June.
    8. Wild, Dieter, 1997. "Short-term forecasting based on a transformation and classification of traffic volume time series," International Journal of Forecasting, Elsevier, vol. 13(1), pages 63-72, March.
    9. Zhou, Xuesong & Mahmassani, Hani S., 2007. "A structural state space model for real-time traffic origin-destination demand estimation and prediction in a day-to-day learning framework," Transportation Research Part B: Methodological, Elsevier, vol. 41(8), pages 823-840, October.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:18:y:1984:i:1:p:1-11. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.