IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v182y2024ics0191261524000456.html
   My bibliography  Save this article

Macroscopic modeling of mixed bi-modal urban networks: A hybrid model of accumulation- and trip-based principles

Author

Listed:
  • Johari, Mansour
  • Keyvan-Ekbatani, Mehdi

Abstract

Network-level traffic flow models either assume steady-state urban flows (i.e. accumulation-based models) or track the movement of all vehicles (i.e. trip-based models). The steady-state assumption present in the accumulation-based models may pose a challenge in light of the multi-modal nature of urban flows. It might be indeed a rough assumption for the flow of some transportation modes like buses, cruising-for-parking vehicles, taxis, and on-demand vehicles. Trip-based models address this concern, however, they need significant parameter calibration effort and are not computationally efficient, which substantially reduces the practicality of these models in real-world applications. Nevertheless, despite the critical importance of developing multi-modal traffic flow models, few attempts have been made to investigate these models in network macroscopic fundamental diagram (NMFD)-related literature. This paper bridges this gap by developing a hybrid network-level traffic flow model for mixed bi-modal (i.e. car and bus) networks. The present hybrid model reproduces the dynamics of car flows via accumulation-based model principles while tracking the movement of buses using the trip-based model. This effort also includes the development of a new FIFO-based entrance function to ensure different modes experience the same delay under saturated traffic conditions. Different numerical experiments are conducted to study the hybrid model performance and to compare it with that of accumulation-based and trip-based models in both steady-state and transition periods under different traffic conditions. Our observations reveal that the hybrid model simulates the dynamics of cars and buses by closely following the behavior of its components under free-flow conditions. The model also outperforms the accumulation-based model under saturated traffic conditions while being considerably less demanding than the trip-based model. A further investigation of the model performance is performed for networks with different bus shares in both free-flow and saturated traffic conditions, confirming the results of the initial numerical experiments. The hybrid model’s computational efficiency is demonstrated. The potential real-world applications of the hybrid model in development of bi-modal network-level simulation models, NMFD-based control strategies along with bus space allocation policies, public transport operation problems, modeling of cruising-for-parking vehicles, taxis, and on-demand vehicles, and modeling and application of autonomous modular vehicles are discussed and future research directions are highlighted.

Suggested Citation

  • Johari, Mansour & Keyvan-Ekbatani, Mehdi, 2024. "Macroscopic modeling of mixed bi-modal urban networks: A hybrid model of accumulation- and trip-based principles," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:transb:v:182:y:2024:i:c:s0191261524000456
    DOI: 10.1016/j.trb.2024.102921
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524000456
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.102921?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:182:y:2024:i:c:s0191261524000456. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.