IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v182y2024ics0191261524000304.html
   My bibliography  Save this article

Two-stage recoverable robust optimization for an integrated location–allocation and evacuation planning problem

Author

Listed:
  • Yin, Yunqiang
  • Xu, Xinrui
  • Wang, Dujuan
  • Yu, Yugang
  • Cheng, T.C.E.

Abstract

We consider an integrated location–allocation and evacuation planning problem in a disaster context, where the effects of a disaster, including the uncertain capacities of relief facilities (rescue centers and distribution centers), uncertain demands for relief supplies and casualty treatment services, and uncertain availability of transportation links are characterized by a discrete scenario set. Instead of complete failures, we allow the disrupted relief facilities only lose part of their capacity. To deal with the uncertainties, we propose a two-stage recoverable robust optimization model, where the location decision of relief facilities, the allocation decision of delivering relief supplies from relief facilities to affected areas, the transfer decision of transporting casualties from affected areas to rescue centers etc are defined in two stages where the first-stage solution should be robust against the possible effects of a disaster that are revealed in the second stage, and the second-stage solution involves some recovery actions, which we term as multi-mitigation strategies: re-opening and re-operation, re-allocation, and relief supply sharing, to mitigate the effects. To solve the model to optimality, we develop a nested two-stage decomposition algorithm that iterates between a master problem considering only a subset of disaster scenarios solved by a Benders decomposition algorithm that incorporates some non-trivial acceleration strategies, and an adversarial separation problem that identifies disaster scenarios to enhance the worst-case recovery cost of the master problem. We introduce some warm-start techniques to accelerate the convergence of the solution algorithm. We conduct numerical studies on simulation instances to assess the performance of the solution algorithm, and analyze the robustness and recoverability of the model. We also conduct extensive numerical studies on realistic instances from Ya’an and Ganzi to demonstrate the benefits of accounting for recoverable robustness over a stochastic policy and a robust policy without recovery actions, the benefits of considering integrated optimization over sequential optimization, and the benefits of considering partial capacity loss and multi-mitigation strategies.

Suggested Citation

  • Yin, Yunqiang & Xu, Xinrui & Wang, Dujuan & Yu, Yugang & Cheng, T.C.E., 2024. "Two-stage recoverable robust optimization for an integrated location–allocation and evacuation planning problem," Transportation Research Part B: Methodological, Elsevier, vol. 182(C).
  • Handle: RePEc:eee:transb:v:182:y:2024:i:c:s0191261524000304
    DOI: 10.1016/j.trb.2024.102906
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261524000304
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2024.102906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:182:y:2024:i:c:s0191261524000304. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.